Journal of Autism and Developmental Disorders

, Volume 42, Issue 3, pp 342–353 | Cite as

Lack of Correlation Between Metallic Elements Analyzed in Hair by ICP-MS and Autism

  • Giuseppe De Palma
  • Simona Catalani
  • Anna Franco
  • Maurizio Brighenti
  • Pietro Apostoli
Original Paper

Abstract

A cross-sectional case–control study was carried out to evaluate the concentrations of metallic elements in the hair of 44 children with diagnosis of autism and 61 age-balanced controls. Unadjusted comparisons showed higher concentrations of molybdenum, lithium and selenium in autistic children. Logistic regression analysis confirmed the role of risk factor for male gender and showed a slight association with molybdenum concentrations. Unconventional chelation and vitamin-mineral supplementation were ineffective on elemental hair concentrations. A meta-analysis including the present and previous similar studies excluded any association of autism with hair concentrations of mercury, cadmium, selenium, lithium and copper. A slight association was found for lead only, but it was very weak, as strictly dependent on the worst data from one study.

Keywords

Autism Hair Metallic elements Inductively coupled mass spectrometry 

References

  1. Adams, J. B., Holloway, C. E., George, F., & Quig, D. (2006). Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biological Trace Element Research, 110, 193–209.PubMedCrossRefGoogle Scholar
  2. Adams, J. B., Romdalvik, J., Ramanujam, V. M., & Legator, M. S. (2007). Mercury, lead, and zinc in baby teeth of children with autism versus controls. Journal of Toxicology and Environmental Health A, 70, 1046–1051.CrossRefGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (ATSDR). (2001). Hair analysis panel discussion: Exploring the state of the science. Jun 12–13. Accessed 14 Feb 2011. Available at URL address: http://www.atsdr.cdc.gov/hac/hair_analysis/table.html.
  4. AMA. (1994). Hair analysis: A potential for abuse. Policy No. H-175.995. Chicago: American Medical Association.Google Scholar
  5. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press.Google Scholar
  6. Apostoli, P., & Catalani, S. (2011). Metal ions affecting reproduction and development. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Metal Ions in Toxicology: Effects, Interactions, Interdependencies: Metal Ions in Life Sciences (Vol. 8; pp. 263–303). Cambridge, UK: The Royal Society of Chemistry.Google Scholar
  7. Apostoli, P., De Palma, G., Catalani, S., Bortolotti, F., & Tagliaro, F. (2009). Multielemental analysis of tissues from Cangrande della Scala, Prince of Verona, in the 14th century. Journal of Analytical Toxicology, 33, 322–327.PubMedGoogle Scholar
  8. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedCrossRefGoogle Scholar
  9. Bernard, S., Enayati, A., Redwood, L., Roger, H., & Binstock, T. (2001). Autism: a novel form of mercury poisoning. Medical Hypotheses, 56, 462–471.PubMedCrossRefGoogle Scholar
  10. Burbacher, T. M., Shen, D. D., Liberato, N., Grant, K. S., Cernichiari, E., & Clarkson, T. (2005). Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environmental Health Perspectives, 113, 1015–1021.PubMedCrossRefGoogle Scholar
  11. Cernichiari, E., Brewer, R., Myers, G. J., Marsh, D. O., Lapham, L. W., Cox, C., et al. (1995). Monitoring methylmercury during pregnancy: Maternal hair predicts fetal brain exposure. Neurotoxicology, 16, 705–710.PubMedGoogle Scholar
  12. Chauhan, A., & Chauhan, V. (2006). Oxidative stress in autism. Pathophysiology, 13, 171–181.PubMedCrossRefGoogle Scholar
  13. Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 609–662.PubMedCrossRefGoogle Scholar
  14. Currenti, S. A. (2010). Understanding and determining the etiology of autism. Cellular and Molecular Neurobiology, 30, 161–171.PubMedCrossRefGoogle Scholar
  15. Deth, R., Muratore, C., Benzecry, J., Power-Charnitsky, V. A., & Waly, M. (2008). How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology, 29, 190–201.PubMedCrossRefGoogle Scholar
  16. Doja, A., & Roberts, W. (2006). Immunizations and autism: A review of the literature. The Canadian Journal of Neurological Sciences, 33, 341–346.PubMedGoogle Scholar
  17. Dunicz-Sokolowska, A., Radomska, K., Długaszek, M., & Graczyk, A. (2006). Contents of bioelements and toxic metals in the Polish population determined by hair analysis. Part 1. Children aged 1 to 10 years. Magnesium Research, 19, 35–45.Google Scholar
  18. Durkin, M. S., Maenner, M. J., Newschaffer, C. J., Lee, L. C., Cunniff, C. M., Daniels, J. L., et al. (2008). Advanced parental age and the risk of autism spectrum disorder. American Journal of Epidemiology, 168, 1268–1276.PubMedCrossRefGoogle Scholar
  19. Easterbrook, P. J., Berlin, J. A., Gopalan, R., & Matthews, D. R. (1991). Publication bias in clinical research. Lancet, 337, 867–872.PubMedCrossRefGoogle Scholar
  20. EPA. (2000). National toxic inventory. Washington, DC: Office of Air Quality Planning and Standards.Google Scholar
  21. Fido, A., & Al Sad, S. (2005). Toxic trace elements in the hair of children with autism. Autism, 9, 290–298.PubMedCrossRefGoogle Scholar
  22. Filipek, P. A., Juranek, J., Nguyen, M. T., Cummings, C., & Gargus, J. J. (2004). Relative carnitine deficiency in autism. Journal of Autism and Developmental Disorder, 34, 615–623.CrossRefGoogle Scholar
  23. Fombonne, E. (2003). Epidemiological surveys of autism and other pervasive developmental disorders: An update. Journal of Autism and Developmental Disorder, 33, 365–382.CrossRefGoogle Scholar
  24. Freed, G. L., Andreae, M. C., Cowan, A. E., & Katz, S. L. (2002). The process of public policy formulation: The case of thimerosal in vaccines. Pediatrics, 109, 1153–1159.PubMedCrossRefGoogle Scholar
  25. Frisch, M., & Schwartz, B. S. (2002). The pitfalls of hair analysis for toxicants in clinical practice: Three case reports. Environmental Health Perspectives, 110, 433–436.PubMedCrossRefGoogle Scholar
  26. Geier, D. A., Kern, J. K., Garver, C. R., Adams, J. B., Audhya, T., Nataf, R., et al. (2009). Biomarkers of environmental toxicity and susceptibility in autism. Journal of the Neurological Sciences, 280, 101–108.PubMedCrossRefGoogle Scholar
  27. Geier, D. A., King, P. G., Sykes, L. K., & Geier, M. R. (2008). A comprehensive review of mercury provoked autism. The Indian Journal of Medical Research, 128, 383–411.PubMedGoogle Scholar
  28. Gentile, P. S., Trentalange, M. J., Zamichek, W., & Coleman, M. (1983). Brief report. Trace elements in the hair of autistic and control children. Journal of Autism and Developmental Disorders, 13, 205–206.PubMedCrossRefGoogle Scholar
  29. Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38, 232–242.PubMedCrossRefGoogle Scholar
  30. Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368, 2167–2178.PubMedCrossRefGoogle Scholar
  31. Grether, J., Croen, L., Theis, C., Blaxill, M., Haley, B., & Holmes, A. (2004). Baby hair, mercury toxicity and autism. International Journal of Toxicology, 23, 275–276.PubMedCrossRefGoogle Scholar
  32. Harkins, D. K., & Susten, A. S. (2003). Hair analysis: Exploring the state of the science. Environmental Health Perspectives, 111, 576–578.PubMedCrossRefGoogle Scholar
  33. Hertz-Picciotto, I., Green, P. G., Delwiche, L., Hansen, R., Walker, C., & Pessah, I. N. (2010). Blood mercury concentrations in CHARGE Study children with and without autism. Environmental Health Perspective, 118, 161–166.Google Scholar
  34. Holmes, A. S., Blaxill, M. F., & Haley, B. E. (2003). Reduced levels of mercury in first baby haircuts of autistic children. International Journal of Toxicology, 22, 277–285.PubMedCrossRefGoogle Scholar
  35. Ip, P., Wong, V., Ho, M., Lee, J., & Wong, W. (2004). Mercury exposure in children with autistic disorder: Case-control study. Journal of Child Neurology, 19, 431–434.PubMedGoogle Scholar
  36. James, S. J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D. W., et al. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. American Journal of Clinical Nutrition, 80, 1611–1617.PubMedGoogle Scholar
  37. James, S. J., Melnyk, S., Jernigan, S., Hubanks, A., Rose, S., & Gaylor, D. W. (2006). Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism. Journal of Autism and Developmental Disorders, 38, 1966–1975.CrossRefGoogle Scholar
  38. Jory, J., & Mc Ginnis, W. R. (2008). Red-cell trace minerals in children with autism. American Journal of Biochemistry and Biotechnology, 4, 101–104.CrossRefGoogle Scholar
  39. Kern, J. K., Geier, D. A., Adams, J. B., & Geier, M. R. (2010). A biomarker of mercury body-burden correlated with diagnostic domain specific clinical symptoms of autism spectrum disorder. BioMetals, 23, 1043–1051.PubMedCrossRefGoogle Scholar
  40. Kern, J. K., Geier, D. A., Adams, J. B., Mehta, J. A., Grannemann, B. D., & Geier, M. R. (in press). Toxicity biomarkers in autism spectrum disorder: A blinded study of urinary porphyrins. Pediatrics International.Google Scholar
  41. Kern, J. K., Grannemann, B. D., Trivedi, M. H., & Adams, J. B. (2007). Sulfhydryl-reactive metals in autism. Journal of Toxicology and Environmental Health A, 70, 715–721.CrossRefGoogle Scholar
  42. Khalique, A., Ahmad, S., Anjum, T., Jaffar, M., Shah, M. H., Shaheen, N., et al. (2005). A comparative study based on gender and age dependence of selected metals in scalp hair. Environmental Monitoring and Assessment, 104, 45–57.PubMedCrossRefGoogle Scholar
  43. King, M., & Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. International Journal of Epidemiology, 38, 1224–1234.PubMedCrossRefGoogle Scholar
  44. Lakshmi Priya, M. D., & Geetha, A. (2010). Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biological Trace Element Research (in press).Google Scholar
  45. Landrigan, P. J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22, 219–225.PubMedCrossRefGoogle Scholar
  46. Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead levels > 10 mcg/dl in US children and adolescents. Public Health Reports, 115, 521–529.PubMedCrossRefGoogle Scholar
  47. Lekouch, N., Sedki, A., Bouhouch, S., Nejmeddine, A., Pineau, A., & Pihan, J. C. (1999). Trace elements in children’s hair, as related exposure in wastewater spreading field of Marrakesh (Morocco). The Science of the Total Environment, 243–244, 323–328.PubMedGoogle Scholar
  48. Lonsdale, D., Shamberger, R. J., & Audhya, T. (2002). Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: A pilot study. Neuroendocrinology Letters, 23, 303–308.PubMedGoogle Scholar
  49. McDowell, M. A., Dillon, C. F., Osterloh, J., Bolger, P. M., Pellizzari, E., Fernando, R., et al. (2004). Hair mercury levels in U.S. children and women of childbearing age: Reference range data from NHANES 1999-2000. Environmental Health Perspectives, 112, 1165–1171.Google Scholar
  50. National Research Council. (2000). Toxicologic effects of methylmercury. Washington, DC: National Academic Press.Google Scholar
  51. Ng, D. K., Chan, C. H., Soo, M. T., & Lee, R. S. (2007). Low-level chronic mercury exposure in children and adolescents: meta-analysis. Pediatrics International, 49, 80–87.PubMedCrossRefGoogle Scholar
  52. O’Roak, B. J., & State, M. W. (2008). Autism genetics: Strategies, challenges, and opportunities. Autism Research, 1, 4–17.PubMedCrossRefGoogle Scholar
  53. Ordog, G. (2006). Molybdenum toxicity: Toxic leukoencephalopathy as a cause of autism. Journal of Investigative Medicine, 54, S161.Google Scholar
  54. Piven, J., Tsai, G. C., Nehme, E., Coyle, J. T., Chase, G. A., & Folstein, S. E. (1991). Platelet serotonin, a possible marker for familial autism. Journal of Autism and Developmental Disorders, 21, 51–59.PubMedCrossRefGoogle Scholar
  55. Rice, D., & Barone, S., Jr. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental Health Perspectives, 108, 511–533.PubMedGoogle Scholar
  56. Rossignol, D. A., & Bradstreet, J. J. (2008). Evidence of mitochondrial dysfunction in autism and implications for treatment. American Journal of Biochemistry and Biotechnology, 4, 208–217.CrossRefGoogle Scholar
  57. Rutter, M. (2005). Autism research: Lessons from the past and prospects for the future. Journal of Autism and Developmental Disorders, 35, 241–257.PubMedCrossRefGoogle Scholar
  58. Schechter, R., & Grether, J. K. (2008). Continuing increases in autism reported to California’s developmental services system: Mercury in retrograde. Archives of General Psychiatry, 65, 19–24.PubMedCrossRefGoogle Scholar
  59. Schopler, E., Reichler, R. J., Devellis, R. F., & Daly, K. (1980). Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of Autism and Developmental Disorders, 10, 91–103.PubMedCrossRefGoogle Scholar
  60. Schulz, C., Angerer, J., Ewers, U., Heudorf, U., Wilhelm, M., & Human Biomonitoring Commission of the German Federal Environment Agency. (2009). Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German environmental survey on children 2003–2006 (GerES IV). International Journal of Hygiene and Environmental Health, 212, 637–647.PubMedCrossRefGoogle Scholar
  61. Shearer, T. R., Larson, K., Neuschwander, J., & Gedney, B. (1982). Minerals in the hair and nutrient intake of autism children. Journal of Autism and Developmental Disorders, 12, 25–34.PubMedCrossRefGoogle Scholar
  62. Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry and Allied Disciplines, 30, 405–416.CrossRefGoogle Scholar
  63. Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., et al. (2009). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Journal of the American Medical Association, 283, 2008–2012.CrossRefGoogle Scholar
  64. Suzuki, T. (1988). Hair and nails: Advantages and pitfalls when used in biological monitoring. In T. W. Clarkson, L. Friberg, G. F. Nordberg, & P. R. Sager (Eds.), Biological monitoring of toxic metals (pp. 623–640). New York: Plenum Press.Google Scholar
  65. The Health & Social Care Information Centre, Social Care Statistics. (2009). Autism spectrum disorders in adults living in households throughout England: Report from the adult psychiatric morbidity survey, 2007. Freely available at: www.ic.nhs.uk/pubs/asdpsychiatricmorbidity07.
  66. Trikalinos, T. A., Karvouni, A., Zintzaras, E., Ylisaukko-oja, T., Peltonen, L., Järvelä, I., et al. (2006). A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Molecular Psychiatry, 11, 29–36.PubMedCrossRefGoogle Scholar
  67. Van Cauwenbergh, R., Robberecht, H., Van Vlaslaer, V., & Deelstra, H. (2004). Comparison of the serum selenium content of healthy adults living in the Antwerp region (Belgium) with recent literature data. Journal of Trace Elements in Medicine and Biology, 18, 99–112.PubMedCrossRefGoogle Scholar
  68. von Mühlendahl, K. E. (2005). Commentary regarding the article by Mutter et al. “Amalgam studies: disregarding basic principles of mercury toxicity” [int. J. Hyg. Environ. Health 207 (2004) 391–397]. International Journal of Hygiene and Environmental Health, 208, 435.Google Scholar
  69. Wakefield, A. J., Murch, S. H., Anthony, A., Linnell, J., Casson, D. M., Malik, M., et al. (1998). Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet, 351, 637–641.PubMedCrossRefGoogle Scholar
  70. Wecker, L., Miller, S. B., Cochran, S. R., Dugger, Dl., & Johnson, W. D. (1985). Trace element concentrations in hair from autistic children. Journal of Mental Deficiency Research, 29, 15–22.PubMedGoogle Scholar
  71. WHO. (1990). Environmental health criteria 101. Methyl mercury. Geneva: World Health Organization.Google Scholar
  72. Wu, X. R., Zhao, D. H., Ling, Q., Bu, D. F., & Zuo, C. H. (1988). Rett syndrome in China: Report of 9 patients. Pediatric Neurology, 4, 126–127.PubMedCrossRefGoogle Scholar
  73. Yao, Y., Walsh, W. J., McGinnis, W. R., & Pratico, D. (2006). Altered vascular phenotype in autism: Correlation with oxidative stress. Archives of Neurology, 63, 1161–1164.PubMedCrossRefGoogle Scholar
  74. Ylisaukko-oja, T., Alarcón, M., Cantor, R. M., Auranen, M., Vanhala, R., Kempas, E., et al. (2006). Search for autism loci by combined analysis of autism genetic resource exchange and finnish families. Annals of Neurology, 59, 145–155.PubMedCrossRefGoogle Scholar
  75. Yorbik, O., Kurt, I., Haşimi, A., & Oztürk, O. (2010). Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biological Trace Element Research, 135, 10–15.PubMedCrossRefGoogle Scholar
  76. Zhang, L., & Wong, M. H. (2007). Environmental mercury contamination in China: Sources and impacts. Environment International, 33, 108–121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Giuseppe De Palma
    • 1
  • Simona Catalani
    • 1
  • Anna Franco
    • 2
  • Maurizio Brighenti
    • 2
  • Pietro Apostoli
    • 1
  1. 1.Department of Experimental and Applied Medicine, Section of Occupational Health and Industrial HygieneUniversity of BresciaBresciaItaly
  2. 2.Child Neuro-Psychiatry and Developmental Age’s Psychology Department, Public HealthVeronaItaly

Personalised recommendations