Journal of Autism and Developmental Disorders

, Volume 42, Issue 1, pp 75–81 | Cite as

Enhanced Cortisol Response to Stress in Children in Autism

  • Eve G. SprattEmail author
  • Joyce S. Nicholas
  • Kathleen T. Brady
  • Laura A. Carpenter
  • Charles R. Hatcher
  • Kirk A. Meekins
  • Richard W. Furlanetto
  • Jane M. Charles
Original paper


Children with Autism often show difficulties in adapting to change. Previous studies of cortisol, a neurobiologic stress hormone reflecting hypothalamic–pituitary–adrenal (HPA) axis activity, in children with autism have demonstrated variable results. This study measured cortisol levels in children with and without Autism: (1) at rest; (2) in a novel environment; and (3) in response to a blood draw stressor. A significantly higher serum cortisol response was found in the group of children with autism. Analysis showed significantly higher peak cortisol levels and prolonged duration and recovery of cortisol elevation following the blood-stick stressor in children with autism. This study suggests increased reactivity of the HPA axis to stress and novel stimuli in children with autism.


Cortisol Autism Stress HPA Adaptability Neurobiology 



This research project was supported by Award Number UL1RR029882 from the National Center for Research Resources, as well as Award Number P50 DA016511 from the Office of Research on Women’s Health at the National Institutes of Health. Control participants were from grant K23 NIH/NIMH K23MH064111: Neurodevelopmental Biology of Neglected Children (PI: Eve G. Spratt) and additional resources were obtained from grant NIH/NIDA K24DA00435: Midcareer Investigator Award in Patient-Oriented Research (PI: Kathleen T. Brady). The content of this research is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health. Many thanks to Quest Diagnostics for performing serum cortisol measurements. Thanks to Drs. Lindsay DeVane and Megan Gunnar, as well as research assistants Loriann Uerebroth, Samantha Friedenberg, Lauren English, and Doreen Condon, for assistance and advice with this project.


  1. Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
  2. Aihara, R., & Hashimoto, T. (1989). Neuroendocrinologic studies on autism. No To Hattatsu, 21, 154–162.PubMedGoogle Scholar
  3. Bourgeron, T. (2010). The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring harbor symposia on quantitative biology, Vol. 72. Cold Spring Harbor Laboratory Press.Google Scholar
  4. Brosnan, M., Turner-Cobb, J., Munro-Naan, Z., & Jessop, D. (2009). Absence of a normal cortisol awakening response (CAR) in adolescent males with Asperger syndrome (AS). Psychoneuroendocrinology, 34(7), 1095–1100.PubMedCrossRefGoogle Scholar
  5. Corbett, B. A., Mendoza, S., Abdullah, M., Wegelin, J. A., & Levine, S. (2006). Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology, 31, 59–68.PubMedCrossRefGoogle Scholar
  6. Corbett, B. A., Schupp, C. W., Levine, S., & Mendoza, S. (2009). Comparing cortisol, stress, and sensory sensitivity in children with autism. Autism Research, 2(1), 39–49.PubMedCrossRefGoogle Scholar
  7. Corbett, B. A., Schupp, C. W., Simon, D., Ryan, N., & Mendoza, S. (2010). Elevated cortisol during play is associated with age and social engagement in children with autism. Molecular Autism, 1(13).Google Scholar
  8. Curin, J. M., Terzic, J., Petkovic, Z. B., Zekan, L., Terzic, I. M., & Susnjara, I. M. (2003). Lower cortisol and higher ACTH levels in individuals with autism. Journal of Autism and Developmental Disorders, 33, 443–448.PubMedCrossRefGoogle Scholar
  9. Dettling, A. C., Parker, S. W., Lane, S., Sebanc, A., & Gunnar, M. R. (2000). Quality of care and temperament determine changes in cortisol concentrations over the day for young children in child care. Psychoneuroendocrinology, 25, 819–836.PubMedCrossRefGoogle Scholar
  10. DiLalla, D. L., & Rogers, S. J. (1994). Domains of the childhood autism rating scale: Revelance for diagnosis and treatment. Journal of Autism and Developmental Disorders, 24, 115–128.PubMedCrossRefGoogle Scholar
  11. Gillespie, C. F., Phifer, J., Bradley, B., & Ressler, K. J. (2009). Risk and resilience: Genetic and environmental influences on development of the stress response. Depression and Anxiety, 26, 984–992.PubMedCrossRefGoogle Scholar
  12. Gomez, M. T., Malozowski, S., Winterer, J., Vamvakopoulos, N. C., & Chrousos, G. P. (1991). Urinary free cortisol values in normal children and adolescents. The Journal of Pediatrics, 118, 256–258.PubMedCrossRefGoogle Scholar
  13. Gonzalez-Bono, E., Rohleder, N., Hellhammer, D. H., Salvador, A., & Kirschbaum, C. (2002). Glucose but not protein or fat load amplifies the cortisol response to psychosocial stress. Hormones and Behavior, 41, 328–333.PubMedCrossRefGoogle Scholar
  14. Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199–220.PubMedCrossRefGoogle Scholar
  15. Hahn, W. E., Van Ness, J., & Chaudhar, N. (1992). Overview of the molecular genetics of mouse brain. Molecular Genetic Neuroscience, 332.Google Scholar
  16. Heinrichs, S. C., & Koob, G. F. (2004). Corticotropin-releasing factor in brain: A role in activation, arousal, and affect regulation. Journal of Pharmacology and Experimental Therapeutics, 311, 427–440.PubMedCrossRefGoogle Scholar
  17. Hill, S. D., Wagner, E. A., Shedlarski, J. G., & Sears, S. P. (1977). Diurnal cortisol and temperature variation of normal and autistic children. Developmental Psychobiology, 10, 579–583.PubMedCrossRefGoogle Scholar
  18. Hoshino, Y., Yokoyama, F., Watanabe, M., Murata, S., Kaneko, M., & Kumashiro, H. (1987). The diurnal variation and response to dexamethasone suppression test of saliva cortisol level in autistic children. Japanese Journal of Psychiatry and Neurology, 41, 227–235.PubMedGoogle Scholar
  19. Jansen, L. M. C., Gispen-de Wied, C. C., & van der Gaag, R.-J. (2003). Differentiation between Autism and multiple complex developmental disorder in response to psychosocial stress. Neuropsychopharmacology, 28, 582–590.PubMedCrossRefGoogle Scholar
  20. Jansen, L. M. C., Gispen-de Wied, C. C., Wiegant, V. M., Westenberg, H. G. M., Lahuis, B., & van Engeland, H. (2006). Autonimic and neuroendocrine responses to a psychosocial stressor in adults with Autistic Spectrum Disorder. Journal of Autism and Developmental Disorders, 36, 891–899.PubMedCrossRefGoogle Scholar
  21. Karten, Y. J., Olariu, A., & Cameron, H. A. (2005). Stress in early life inhibits neurogenesis in adulthood. Trends in Neuroscience, 28, 171–172.CrossRefGoogle Scholar
  22. Lam, K. S., Aman, M. G., & Arnold, L. E. (2006). Neurochemical correlates of autistic disorder: A review of the literature. Research in Developmental Disabilities, 27, 254–289.PubMedCrossRefGoogle Scholar
  23. Lopata, C., Volker, M. A., Putnam, S. K., Thomeer, M. L., & Nida, R. E. (2008). Effect of social familiarity on salivary cortisol and self-reports of social anxiety and stress in children with high functioning Autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(10), 1866–1877.PubMedCrossRefGoogle Scholar
  24. Lord, C., & Risi, S. (2000). A standard measure of social and communication deficits associated with the spectrum of Autism. The Autism Diagnostic Observation Schedule- Generic, 30, 205–223.Google Scholar
  25. Maher, K. R., Harper, J. F., Macleay, A., & King, M. G. (1975). Peculiarities in the endocrine response to insulin stress in early infantile Autism. Journal of Nervous and Mental Disease, 161, 180–184.PubMedCrossRefGoogle Scholar
  26. Naber, F. B., Swinkels, S. H., Buitelaar, J. K., Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Dietz, C., et al. (2007). Attachment in toddlers with autism and other developmental disorders. Journal of Autism and Developmental Disorders, 37(6), 1123–1138.PubMedCrossRefGoogle Scholar
  27. Nir, I., Meir, D., Zilber, N., Knobler, H., Hadjez, J., & Lerner, Y. (1995). Brief report: Circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism. Journal of Autism and Developmental Disorders, 25, 641–654.PubMedCrossRefGoogle Scholar
  28. Rice, C. (2009). Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network. CDC: MMWR Surveillance Summaries, 58, 1–20. Retrieved from
  29. Richdale, A. L., & Prior, M. R. (1992). Urinary cortisol circadian rhythm in a group of high-functioning children with Autism. Journal of Autism and Developmental Disorders, 22, 433–447.PubMedCrossRefGoogle Scholar
  30. Schopler, E., Reichler, R., & DeVellis, R. (1980). Toward objective classification of childhood autism: Childhood autism rating scale (CARS). Journal of Autism and Developmental Disorders, 10, 91–103.PubMedCrossRefGoogle Scholar
  31. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.PubMedCrossRefGoogle Scholar
  32. Tordjman, S., Anderson, G. M., McBride, P. A., Hertzig, M. E., Snow, M. E., & Hall, L. M. (1997). Plasma beta-endorphin, adrenocorticotropin hormone, and cortisol. Journal of Child Psychology and Psychiatry, 38, 705–715.PubMedCrossRefGoogle Scholar
  33. Yamazaki, K., Saito, Y., Okada, F., Fujieda, T., & Yamashita, I. (1975). An application of neuroendocrinological studies in autistic children and Heller’s syndrome. Journal of Autism and Childhood Schizophrenia, 5, 323–332.PubMedCrossRefGoogle Scholar
  34. Zinke, K., Fries, E., Kliegel, M., Kirschbaum C., & Dettenborn, L. (2010). Children with high-functioning autism show a normal cortisol awakening response (CAR). Psychoneuroendocrinology. Epub April 19 2010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eve G. Spratt
    • 1
    Email author
  • Joyce S. Nicholas
    • 1
  • Kathleen T. Brady
    • 1
  • Laura A. Carpenter
    • 1
  • Charles R. Hatcher
    • 1
  • Kirk A. Meekins
    • 1
  • Richard W. Furlanetto
    • 2
  • Jane M. Charles
    • 1
  1. 1.Medical University of South CarolinaCharlestonUSA
  2. 2.Nichols Institute-Quest DiagnosticsChantillyUSA

Personalised recommendations