Journal of Autism and Developmental Disorders

, Volume 41, Issue 8, pp 1053–1063 | Cite as

Intention Perception in High Functioning People with Autism Spectrum Disorders Using Animacy Displays Derived from Human Actions

  • Phil McAleer
  • Jim W. Kay
  • Frank E. Pollick
  • M. D. Rutherford
Original Paper


The perception of intent in Autism Spectrum Disorders (ASD) often relies on synthetic animacy displays. This study tests intention perception in ASD via animacy stimuli derived from human motion. Using a forced choice task, 28 participants (14 ASDs; 14 age and verbal-I.Q. matched controls) categorized displays of Chasing, Fighting, Flirting, Following, Guarding and Playing, from two viewpoints (side, overhead) in both animacy and full video displays. Detailed analysis revealed no differences between populations in accuracy, or response patterns. Collapsing across groups revealed Following and Video displays to be most accurately perceived. The stimuli and intentions used are compared to those of previous studies, and the implication of our results on the understanding of Theory of Mind in ASD is discussed.


Autism Intention Perception Animacy 



The authors would like to thank Dr. Lawrie S. McKay (NiN, Amsterdam, The Netherlands), and Dr. David R. Simmons and Dr. Helena M. Paterson (University of Glasgow, School of Psychology) for their helpful comments.


  1. Abell, F., Happé, F., & Frith, U. (2000). Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. Cognitive Development, 15, 1–16.CrossRefGoogle Scholar
  2. Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., et al. (1999). The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport: For Rapid Communication of Neuroscience Research, 10(8), 1647–1651.Google Scholar
  3. Asperger, H. (1944). Die autistischen Psychopathen im Kindesalter. In U. Frith (Ed.), Autism and Asperger Syndrome Archiv für Psychiatrie und Nervenkrankheiten (pp. 76–136). Cambridge, UK: Cambridge University Press.Google Scholar
  4. Bachevalier, J. (1991). An animal model for childhood autism: Memory loss and socioemotional disturbances following neonatal damage to the limbic system in monkeys. In C. A. Tamminga & S. C. Schulz (Eds.), Advances in neuropsychiatry and psychopharmacology (Vol. 1) (pp. 129–140). New York: Raven Press.Google Scholar
  5. Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Cambridge, MA: The MIT Press.Google Scholar
  6. Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Sciences, 6, 248–254.PubMedCrossRefGoogle Scholar
  7. Baron-Cohen, S. (2003). The essential difference. London, UK: Penguin.Google Scholar
  8. Baron-Cohen, S., & Belmonte, M. K. (2005). Autism: A window onto the development of the social analytic brain. Annual Review of Neuroscience, 28, 109–126.PubMedCrossRefGoogle Scholar
  9. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46.PubMedCrossRefGoogle Scholar
  10. Baron-Cohen, S., Wheelwright, S., Griffin, R., Lawson, J., & Hill, J. (2002). The exact mind: Empathising and systemising in autism spectrum conditions. In U. Goswami (Ed.), Handbook of development. Oxford: Blackwell.Google Scholar
  11. Barrett, H. C., Todd, P. M., Miller, G. F., & Blythe, P. W. (2005). Accurate judgements of intention from motion cues alone: A cross-cultural study. Evolution and Human Behaviour, 26, 313–331.CrossRefGoogle Scholar
  12. Bassili, J. N. (1976). Temporal and spatial contingencies in the perception of social events. Journal of Personality and Social Psychology, 33(6), 680–685.CrossRefGoogle Scholar
  13. Bauman, M. L., & Kemper, T. L. (1994). Neuroanatomic observations of the brain in autism. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 119–145). Baltimore, MD: John Hopkins University Press.Google Scholar
  14. Berry, D. S., Misovich, S. J., Kean, K. J., & Baron, R. M. (1992). Effects of disruption of structure and motion on perception of social causality. Personality and Social Psychology Bulletin, 18(2), 237–238.CrossRefGoogle Scholar
  15. Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L., & Stone, W. L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14, 151–157.PubMedCrossRefGoogle Scholar
  16. Blakemore, S. J., Boyer, P., Pachot-Clouard, M., Meltzoff, A., Segebarth, C., & Decety, J. (2003). The detection of contingency and animacy from simple animations in the human brain. Cerebral Cortex, 13, 837–844.PubMedCrossRefGoogle Scholar
  17. Bloom, P., & Veres, C. (1999). The perceived intentionality of groups. Cognition, 71, B1–B9.PubMedCrossRefGoogle Scholar
  18. Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How motion reveals intention: Categorizing social interactions in simple Heuristics that make us smart. In Gigerenzer, et al. (Eds.), Simple Heuristics that make us smart (pp. 257–285). Oxford: Oxford University Press.Google Scholar
  19. Bowler, D. M., & Thommen, E. (2000). Attribution of mechanical and social causality to animated displays by children with autism. Autism, 4, 147–171.CrossRefGoogle Scholar
  20. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.PubMedCrossRefGoogle Scholar
  21. Brothers, L. (1990). The social brain: A project for integrating primate behaviour and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27–51.Google Scholar
  22. Castelli, F. (2006). The Valley task: Understanding intention from goal-directed motion in typical development and autism. British Journal of Developmental Psychology, 24, 655–668.CrossRefGoogle Scholar
  23. Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, Asperger Syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 1839–1849.PubMedCrossRefGoogle Scholar
  24. Castelli, F., Happé, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12, 314–325.PubMedCrossRefGoogle Scholar
  25. Davison, A. C., & Hinkley, D. V. (2007). Bootstrap methods and their application. Cambridge, UK: Cambridge University Press.Google Scholar
  26. Edgington, E. S., & Onghena, P. (2007). Randomization tests. Boca Raton. USA: CRC Press.Google Scholar
  27. Fisher, R. A. (1922). On the interpretation of χ2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94.CrossRefGoogle Scholar
  28. Freitag, C. M., Konrad, C., Häberlein, M., Kleser, C., von Gontard, A., Reith, W., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46, 1480–1494.PubMedCrossRefGoogle Scholar
  29. Frith, U. (1989). Autism: Explaining the enigma. Oxford: Blackwell.Google Scholar
  30. Frith, U., & Frith, C. D. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10, 151–155.CrossRefGoogle Scholar
  31. Gao, T., Newman, G. E., & Scholl, B. J. (2009). The psychophysics of chasing: A case study in the perception of animacy. Cognitive Psychology, 59, 154–179.PubMedCrossRefGoogle Scholar
  32. Gergely, G., Nadasdy, Z., Csibra, G., & Biro, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165–193.PubMedCrossRefGoogle Scholar
  33. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 5–25.CrossRefGoogle Scholar
  34. Hashimoto, H. (1966). A phenomenal analysis of social perception. Journal of Child Development, 2, 1–16.Google Scholar
  35. Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57, 243–259.CrossRefGoogle Scholar
  36. Herrington, J. D., Baron-Cohen, S., Wheelwright, S. J., Singh, K. D., Bullmore, E. T., Brammer, M., et al. (2007). The role of MT+/V5 during biological motion perception in Asperger Syndrome: An fMRI study. Research in Autism Spectrum Disorders, 1(1), 14–27.CrossRefGoogle Scholar
  37. Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., Duverger, H., Da Fonséca, D., et al. (2007). Brief report: Recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 37, 1386–1392.PubMedCrossRefGoogle Scholar
  38. Johnson, C. R., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18(2), 73–89.CrossRefGoogle Scholar
  39. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951–961.PubMedCrossRefGoogle Scholar
  40. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  41. Klein, A. M., Zwickel, J., Prinz, W., & Frith, U. (2009). Animated triangles: An eye tracking investigation. Quarterly Journal of Experimental Psychology, 62(6), 1189–1197.CrossRefGoogle Scholar
  42. Klin, A. (2000). Attributing social meaning to ambiguous visual stimuli in higher-functioning autism and Asperger syndrome: The Social Attribution Task. Journal of Child Psychology and Psychiatry and Allied Disciplines, 41, 831–846.CrossRefGoogle Scholar
  43. Kuhlmeier, V. A., Wynn, K., & Bloom, P. (2003). Attribution of dispositional states by 12-month-olds. Psychological Science, 14, 402–408.PubMedCrossRefGoogle Scholar
  44. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRefGoogle Scholar
  45. Lord, C., Rutter, M., & LeCouteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.PubMedCrossRefGoogle Scholar
  46. McAleer, P., & Pollick, F. E. (2008). Understanding intention from minimal displays of human activity. Behavior Research Methods, 40(3), 830–839.PubMedCrossRefGoogle Scholar
  47. McKay, L. S., McAleer, P., Simmons, D. R., Marjoram, D., Piggot, J. & Pollick, F. P. (2010) Distinct configural processing networks reveal differences in biological motion processing in ASD. Organization for Human Brain Mapping—Annual Meeting, Barcelona, June 6-10.Google Scholar
  48. Michotte, A. (1963). The perception of causality. Oxford: Basic Books.Google Scholar
  49. Moore, D. G., Hobson, R. P., & Lee, A. (1997). Components of person perception: An investigation with autistic, non-autistic retarded and typically developing children and adolescents. British Journal of Developmental Psychology, 15, 401–423.CrossRefGoogle Scholar
  50. Parron, C., Da Fonseca, D., Santos, A., Moore, D. G., Monfardini, E., & Deruelle, C. (2008). Recognition of biological motion in children with autistic spectrum disorders. Autism, 12(3), 261–264.PubMedCrossRefGoogle Scholar
  51. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.PubMedCrossRefGoogle Scholar
  52. Rime, B. (1985). The perception of interpersonal emotions originated by patterns of movement. Motivation and Emotion, 9, 241–260.CrossRefGoogle Scholar
  53. Rutherford, M. D., Pennington, B. F., & Rogers, S. J. (2006). The perception of animacy in young children with autism. Journal of Autism and Developmental Disorders, 36, 893–992.CrossRefGoogle Scholar
  54. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49, 2705–2739.PubMedCrossRefGoogle Scholar
  55. Szego, P., & Rutherford, M. D. (2007). Actual and illusory differences in constant speed influence the perception of animacy similarly. Journal of Vision, 7, 1–7.PubMedCrossRefGoogle Scholar
  56. Szego, P., & Rutherford, M. D. (2008). Dissociating the perception of speed and the perception of animacy: A functional approach. Evolution and Human Behavior, 29(5), 335–342.CrossRefGoogle Scholar
  57. Westfall, P. H., & Young, S. S. (1989). p-value adjustment for multiple tests in multivariate binomial models. Journal of American Statistical Association, 84, 780.CrossRefGoogle Scholar
  58. Zacks, J. M. (2004). Using movement and intentions to understand simple events. Cognitive Science, 28, 979–1008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Phil McAleer
    • 1
  • Jim W. Kay
    • 2
  • Frank E. Pollick
    • 2
  • M. D. Rutherford
    • 3
  1. 1.Institute of Neuroscience and Psychology and the School of PsychologyUniversity of GlasgowGlasgowScotland, UK
  2. 2.School of Mathematics and StatisticsUniversity of GlasgowGlasgowScotland, UK
  3. 3.Department of Psychology, Neuroscience and BehaviourMcMaster UniversityHamiltonCanada

Personalised recommendations