Journal of Autism and Developmental Disorders

, Volume 41, Issue 1, pp 13–22 | Cite as

Functional Evaluation of Hidden Figures Object Analysis in Children with Autistic Disorder

  • Krisztina L. Malisza
  • Christine Clancy
  • Deborah Shiloff
  • Derek Foreman
  • Jeanette Holden
  • Cheryl Jones
  • K. Paulson
  • Randy Summers
  • C. T. Yu
  • Albert E. Chudley
Original Paper


Functional magnetic resonance imaging (fMRI) during performance of a hidden figures task (HFT) was used to compare differences in brain function in children diagnosed with autism disorder (AD) compared to children with attention-deficit/hyperactivity disorder (ADHD) and typical controls (TC). Overall greater functional MRI activity was observed in the two control groups compared to children with AD. Laterality differences were also evident, with AD subjects preferentially showing activity in the right medial temporal region while controls tended to activate the left medial temporal cortex. Reduced fMRI activity was observed in the parietal, ventral-temporal and hippocampal regions in the AD group, suggesting differences in the way that children with AD process the HFT.


Autism Disorder (AD) Attention Deficit Hyperactivity Disorder (ADHD) Embedded Figures Task (EFT) Hidden Figures Task (HFT) Functional Magnetic Resonance Imaging (fMRI) 


  1. Akshoomoff, N. A. (2005). The neuropsychology of autistic spectrum disorder. Introduction to special issue. Developmental Neuropsychology, 27, 307–310.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. DSM-IV (4th ed.). Washington: APA.Google Scholar
  3. Baron-Cohen, S., Ring, H., Moriarty, J., Schmitz, B., Costa, D., & Ell, P. (1994). Recognition of mental state terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. British Journal of Psychiatry, 165, 640–649.CrossRefPubMedGoogle Scholar
  4. Belmonte, M., & Carper, R. (1998). Neuroanatomical and neurophysiological clues to the nature of autism. In B. Garreau (Ed.), Neuroimaging in Child Neuropsychiatric Disorders. France: Springer.Google Scholar
  5. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. New York: Sinauer Associates.Google Scholar
  6. Boddaert, N., & Zilbovicius, M. (2002). Functional neuroimaging and childhood autism. Pediatric Radiology, 32, 1–7.CrossRefPubMedGoogle Scholar
  7. Bolton, P. F., & Griffiths, P. D. (1997). Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet, 349, 392–395.CrossRefPubMedGoogle Scholar
  8. Brian, J. A., & Bryson, S. E. (1996). Disembedding performance and recognition memory in autism/PDD. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37, 865–872.CrossRefGoogle Scholar
  9. Chakrabarti, S., & Fombonne, E. (2005). Pervasive developmental disorders in preschool children: Confirmation of high prevalence. The American Journal of Psychiatry, 162, 1133–1141.CrossRefPubMedGoogle Scholar
  10. Chudley, A. E. (2004). Genetic landmarks through philately—autism spectrum disorders: A genetic update. Clinical Genetics, 65, 352–357.CrossRefPubMedGoogle Scholar
  11. Chudley, A. E., Gutierrez, E., Jocelyn, L. J., & Chodirker, B. N. (1998). Outcomes of genetic evaluation in children with pervasive developmental disorder. Journal of Developmental and Behavioral Pediatrics, 19, 321–325.CrossRefPubMedGoogle Scholar
  12. Chugani, D. C., Muzik, O., Rothermel, R., Behen, M., Chakraborty, P., Mangner, T., et al. (1997). Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Annals of Neurology, 42, 666–669.CrossRefPubMedGoogle Scholar
  13. Corbett, B. A., & Constantine, L. J. (2006). Autism and attention deficit hyperactivity disorder: Assessing attention and response control with the integrated visual and auditory continuous performance test. Child Neuropsychology, 12, 335–348.CrossRefPubMedGoogle Scholar
  14. Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. The New England Journal of Medicine, 318, 1349–1354.CrossRefPubMedGoogle Scholar
  15. Crespi, B., & Badcock, C. (2008). Psychosis and autism as diametrical disorders of the social brain. The Behavioral and Brain Sciences, 3, 241–261.Google Scholar
  16. Critchley, H. D., Daly, E. M., Bullmore, E. T., Williams, S. C., Van Amelsvoort, T., Robertson, D. M., et al. (2000). The functional neuroanatomy of social behaviour: Changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123(Pt 11), 2203–2212.CrossRefPubMedGoogle Scholar
  17. de Jonge, M. V., Kemner, C., & van Engeland, H. (2006). Superior disembedding performance of high-functioning individuals with autism spectrum disorders and their parents: The need for subtle measures. Journal of Autism and Developmental Disorders, 36, 677–683.CrossRefPubMedGoogle Scholar
  18. Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Kit of factor-referenced cognitive tests. Educational Testing Service, Princeton.Google Scholar
  19. Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601.CrossRefPubMedGoogle Scholar
  20. Fombonne, E. (2003). Epidemiological surveys of autism and other pervasive developmental disorders: An update. Journal of Autism and Developmental Disorders, 33, 365–382.CrossRefPubMedGoogle Scholar
  21. Grinter, E. J., Maybery, M. T., Van Beek, P. L., Pellicano, E., Badcock, J. C., & Badcock, D. R. (2009). Global visual processing and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39, 1278–1290.CrossRefPubMedGoogle Scholar
  22. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143–156.CrossRefPubMedGoogle Scholar
  23. Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the embedded figures test? Journal of Child Psychology and Psychiatry and Allied Disciplines, 38, 527–534.CrossRefGoogle Scholar
  24. Klin, A., Volkmar, F. R., Sparrow, S. S., Cicchetti, D. V., & Rourke, B. P. (1995). Validity and neuropsychological characterization of Asperger syndrome: Convergence with nonverbal learning disabilities syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 36, 1127–1140.CrossRefGoogle Scholar
  25. Kosslyn, S. M., Thompson, W. L., Kim, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378, 496–498.CrossRefPubMedGoogle Scholar
  26. Lee, P. S., Foss-Feig, J., Henderson, J. G., Kenworthy, L. E., Gilotty, L., Gaillard, W. D., et al. (2007). Atypical neural substrates of embedded figures task performance in children with autism spectrum disorder. Neuroimage, 38, 184–193.CrossRefPubMedGoogle Scholar
  27. Lezak, M. D. (1995). Neuropsychological Assessment (3rd ed.). New York: Oxford University Press.Google Scholar
  28. Liu, X., Steinmetz, N. A., Farley, A. B., Smith, C. D., & Joseph, J. E. (2008). Mid-fusiform activation during object discrimination reflects the process of differentiating structural descriptions. Journal of Cognitive Neuroscience, 20, 1711–1726.CrossRefPubMedGoogle Scholar
  29. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.CrossRefPubMedGoogle Scholar
  30. Manjaly, Z. M., Bruning, N., Neufang, S., Stephan, K. E., Brieber, S., Marshall, J. C., et al. (2007). Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents. Neuroimage, 35, 283–291.CrossRefPubMedGoogle Scholar
  31. Manjaly, Z. M., Marshall, J. C., Klaas, E. S., Gurd, J. M., Zilles, K., & Fink, G. R. (2005). Context-dependent interactions of left posterior inferior frontal gyrus in a local visual search task unrelated to language. Congitive Neuorpsychology, 22, 292–305.CrossRefGoogle Scholar
  32. Manjaly, Z. M., Marshall, J. C., Stephan, K. E., Gurd, J. M., Zilles, K., & Fink, G. R. (2003). In search of the hidden: An fMRI study with implications for the study of patients with autism and with acquired brain injury. Neuroimage, 19, 674–683.CrossRefPubMedGoogle Scholar
  33. Ouellette-Kuntz, H., Coo, H., Yu, C. T., Chudley, A. E., Noonan, A., Breitenbach, M., et al. (2006). Prevalence of pervasive developmental disorders in Manitoba and Prince Edward Island. Journal of Policy and Practice in Intellectual Disabilities, 3, 164–172.CrossRefGoogle Scholar
  34. Picchioni, M., Matthiasson, P., Broome, M., Giampietro, V., Brammer, M., Mathes, B., et al. (2007). Medial temporal lobe activity at recognition increases with the duration of mnemonic delay during an object working memory task. Human Brain Mapping, 28, 1235–1250.CrossRefPubMedGoogle Scholar
  35. Pliszka, S. R., Glahn, D. C., Semrud-Clikeman, M., Franklin, C., Perez, R., I. I. I., Xiong, J., et al. (2006). Neuroimaging of inhibitory control areas in children with attention deficit hyperactivity disorder who were treatment naive or in long-term treatment. The American Journal of Psychiatry, 163, 1052–1060.CrossRefPubMedGoogle Scholar
  36. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.CrossRefPubMedGoogle Scholar
  37. Posner, M. I., & Rothbart, M. K. (2009). Toward a physical basis of attention and self regulation. Physics of Life Reviews, 6(2), 103–120.CrossRefPubMedGoogle Scholar
  38. Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective & Behavioral Neuroscience, 7(4), 391–395.CrossRefGoogle Scholar
  39. Rapin, I., & Tuchman, R. F. (2008). Autism: Definition, neurobiology, screening, diagnosis. Pediatric Clinics of North America, 55, 1129–1146. viii.CrossRefPubMedGoogle Scholar
  40. Rice, C. (2007). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR Surveillance Summaries, 56, 12–28.Google Scholar
  41. Ring, H. A., Baron-Cohen, S., Wheelwright, S., Williams, S. C., Brammer, M., Andrew, C., et al. (1999). Cerebral correlates of preserved cognitive skills in autism: A functional MRI study of embedded figures task performance. Brain, 122(Pt 7), 1305–1315.CrossRefPubMedGoogle Scholar
  42. Roth, J. K., & Courtney, S. M. (2007). Neural system for updating object working memory from different sources: Sensory stimuli or long-term memory. Neuroimage, 38, 617–630.CrossRefPubMedGoogle Scholar
  43. Rumsey, J. M. (1996). Neuroimaging: A window to the neurological foundations of learning and behavior in children. In G. R. Lyon & J. M. Rumsey (Eds.), Neuroimaging studies of autism (pp. 119–146). Baltimore: Paul H. Brookes.Google Scholar
  44. Rumsey, J. M., & Ernst, M. (2000). Functional neuroimaging of autistic disorders. Mental Retardation and Developmental Disabilities Research Reviews, 6, 171–179.CrossRefPubMedGoogle Scholar
  45. Russell-Smith, S. N., Maybery, M. T., & Bayliss, D. M. (2010). Are the autism and positive schizotypy spectra diametrically opposed in local versus global processing? Journal of Autism and Developmental Disorders., Jan 28. [Epub ahead of print].Google Scholar
  46. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579.CrossRefPubMedGoogle Scholar
  47. Schultz, R. T., Gauthier, I., Klin, A., Fulbright, R. K., Anderson, A. W., Volkmar, F., et al. (2000). Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Archives of General Psychiatry, 57, 331–340.CrossRefPubMedGoogle Scholar
  48. Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry and Allied Disciplines, 24, 613–620.CrossRefGoogle Scholar
  49. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.CrossRefPubMedGoogle Scholar
  50. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208–S219.CrossRefPubMedGoogle Scholar
  51. Tamm, L., Menon, V., & Reiss, A. L. (2006). Parietal attentional system aberrations during target detection in adolescents with attention deficit hyperactivity disorder: Event-related fMRI evidence. The American Journal of Psychiatry, 163, 1033–1043.CrossRefPubMedGoogle Scholar
  52. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 95, 883–890.CrossRefPubMedGoogle Scholar
  53. Weissman, D. H., & Woldorff, M. G. (2005). Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal loci. Cerebral Cortex, 15, 870–876.CrossRefPubMedGoogle Scholar
  54. Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage, 14, 1370–1386.CrossRefPubMedGoogle Scholar

Copyright information

© UKCrown: National Research Council of Canada, Institute for Biodiagnostics 2010

Authors and Affiliations

  • Krisztina L. Malisza
    • 1
    • 2
  • Christine Clancy
    • 3
  • Deborah Shiloff
    • 1
  • Derek Foreman
    • 1
  • Jeanette Holden
    • 4
  • Cheryl Jones
    • 1
  • K. Paulson
    • 1
  • Randy Summers
    • 1
  • C. T. Yu
    • 5
  • Albert E. Chudley
    • 6
  1. 1.National Research CouncilInstitute for BiodiagnosticsWinnipegCanada
  2. 2.Department of PhysiologyUniversity of ManitobaWinnipegCanada
  3. 3.Division of Rehabilitation PsychologyChildren’s Hospital and Regional Medical Center SeattleSeattleUSA
  4. 4.Department of Psychiatry & PhysiologyQueen’s University & Autism Spectrum Disorders Research Program OngwanadaKingstonCanada
  5. 5.Department of PsychologyUniversity of Manitoba & St. Amant Research CentreWinnipegCanada
  6. 6.Department of Pediatrics and Child HealthUniversity of Manitoba & Children’s HospitalWinnipegCanada

Personalised recommendations