Journal of Autism and Developmental Disorders

, Volume 40, Issue 8, pp 978–987 | Cite as

Spatial Contrast Sensitivity in Adolescents with Autism Spectrum Disorders

  • Hwan Cui Koh
  • Elizabeth Milne
  • Karen Dobkins
Original Paper


Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5–20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual acuity, peak spatial frequency, peak contrast sensitivity, and contrast sensitivity at a low spatial frequency. There were no group differences on any of the four CSF measures, indicating no differential spatial frequency processing in ASD. Although it has been suggested that detail-oriented visual perception in individuals with ASD may be a result of differential sensitivities to low versus high spatial frequencies, the current study finds no evidence to support this hypothesis.


Autism spectrum disorders Spatial frequency Contrast sensitivity Visual acuity Perception Visual psychophysics 



This research was supported by NIH grant R01 HD052804-01A2 (KD), and a WUN Research mobility award (HCK). We would like to thank all of the families who generously participated in this study, and the schools who helped with participant recruitment. We also acknowledge Ms Beth Hannaman, the Program Manager of Resources for Students with Autism, and the Research Review committee with the Research and Reporting Department, at the San Diego Unified School District for their valuable input and assistance in participant recruitment. We would also like to thank Sarah Song for her assistance with data collection, and Katie Wagner and Hao Ye for technical advice.


  1. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nat Rev Genet, 9(5), 341–355.CrossRefPubMedGoogle Scholar
  2. APA. (2004). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  3. Ashwin, E., Ashwin, C., Rhydderch, D., Howells, J., & Baron-Cohen, S. (2009). Eagle-eyed visual acuity: An experimental investigation of enhanced perception in autism. Biological Psychiatry, 65(1), 17–21.CrossRefPubMedGoogle Scholar
  4. Bach, M., & Dakin, S. (2009). Commentary on “Eagle-eyed visual acuity: An experimental investigation of enhanced perception in autism”. Biological Psychiatry, 66(10), e19–e20.Google Scholar
  5. Badcock, J. C., Whitworth, F. A., Badcock, D. R., & Lovegrove, W. J. (1990). Low-frequency filtering and the processing of local—global stimuli. Perception, 19(5), 617–629.CrossRefPubMedGoogle Scholar
  6. Beglinger, L., & Smith, T. (2001). A review of subtyping in autism and proposed dimensional classification model. Journal of Autism and Developmental Disorders, 31(4), 411–422.CrossRefPubMedGoogle Scholar
  7. Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., et al. (2006a). Configural processing in autism and its relationship to face processing. Neuropsychologia, 44(1), 110–129.CrossRefPubMedGoogle Scholar
  8. Behrmann, M., Thomas, C., & Humphreys, K. (2006b). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10(6), 258–264.CrossRefPubMedGoogle Scholar
  9. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(10), 2430–2441.CrossRefPubMedGoogle Scholar
  10. Boeschoten, M. A., Kemner, C., Kenemans, J. L., & van Engeland, H. (2005). The relationship between local and global processing and the processing of high and low spatial frequencies studied by event-related potentials and source modeling. Cognitive Brain Research, 24(2), 228–236.CrossRefPubMedGoogle Scholar
  11. Boeschoten, M. A., Kenemans, J. L., van Engeland, H., & Kemner, C. (2007a). Abnormal spatial frequency processing in high-functioning children with pervasive developmental disorder (PDD). Clinical Neurophysiology, 118(9), 2076–2088.CrossRefPubMedGoogle Scholar
  12. Boeschoten, M. A., Kenemans, J. L., van Engeland, H., & Kemner, C. (2007b). Face processing in pervasive developmental disorder (PDD): The roles of expertise and spatial frequency. Journal of Neural Transmission, 114(12), 1619–1629.CrossRefPubMedGoogle Scholar
  13. Brosnan, M. J., Scott, F. J., Fox, S., & Pye, J. (2004). Gestalt processing in autism: Failure to process perceptual relationships and the implications for contextual understanding. Journal of Child Psychology and Psychiatry, 45(3), 459–469.CrossRefPubMedGoogle Scholar
  14. Constantino, J. N., Przybeck, T., Friesen, D., & Todd, R. D. (2000). Reciprocal social behavior in children with and without pervasive developmental disorders. Journal of Developmental and Behavioral Pediatrics, 21(1), 2–11.CrossRefPubMedGoogle Scholar
  15. Davis, R., Bockbrader, M., Murphy, R., Hetrick, W., & O’Donnell, B. (2006). Subjective perceptual distortions and visual dysfunction in children with autism. Journal of Autism and Developmental Disorders, 36(2), 199–210.CrossRefPubMedGoogle Scholar
  16. de Jonge, M. V., Kemner, C., de Haan, E. H., Coppens, J. E., van den Berg, T., & van Engeland, H. (2007). Visual information processing in high-functioning individuals with autism spectrum disorders and their parents. Neuropsychology, 21(1), 65–73.CrossRefPubMedGoogle Scholar
  17. Deruelle, C., Rondan, C., Gepner, B., & Tardif, C. (2004). Spatial frequency and face processing in children with autism and asperger syndrome. Journal of Autism and Developmental Disorders, 34(2), 199–210.CrossRefPubMedGoogle Scholar
  18. Deruelle, C., Rondan, C., Salle-Collemiche, X., Bastard-Rosset, D., & Da Fonseca, D. (2008). Attention to low- and high-spatial frequencies in categorizing facial identities, emotions and gender in children with autism. Brain and Cognition, 66(2), 115–123.CrossRefPubMedGoogle Scholar
  19. Dobkins, K. R., Anderson, C. M., & Lia, B. (1999). Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: Evidence for precocious magnocellular development? Vision Research, 39(19), 3223–3239.CrossRefPubMedGoogle Scholar
  20. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMedGoogle Scholar
  21. Gumbel, E. J. (1958). Statistics of extremes. New York: Columbia University Press.Google Scholar
  22. Gunther, K. L., & Dobkins, K. R. (2002). Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye. Vision Research, 42(11), 1367–1378.CrossRefPubMedGoogle Scholar
  23. Gwiazda, J., Bauer, J., Thorn, F., & Held, R. (1997). Development of spatial contrast sensitivity from infancy to adulthood: Psychophysical data. Optometry and Vision Science, 74(10), 785–789.CrossRefPubMedGoogle Scholar
  24. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.CrossRefPubMedGoogle Scholar
  25. Happé, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220.CrossRefPubMedGoogle Scholar
  26. Hughes, H. C., Nozawa, G., & Kitterle, F. (1996). Global precedence, spatial frequency channels, and the statistics of natural images. Journal of Cognitive Neuroscience, 8(3), 197–230.CrossRefGoogle Scholar
  27. Jarrold, C., Gilchrist, I. D., & Bender, A. (2005). Embedded figures detection in autism and typical development: Preliminary evidence of a double dissociation in relationships with visual search. Developmental Science, 8(4), 344–351.CrossRefPubMedGoogle Scholar
  28. Jemel, B., Mottron, L., & Dawson, M. (2006). Impaired face processing in autism: Fact or artifact? Journal of Autism and Developmental Disorders, 36(1), 91–106.CrossRefPubMedGoogle Scholar
  29. Johnson, N. L., Kotz, S., & Balakrisnan, N. (1995). Continuous univariate distributions (Vol. 2). New York: Wiley.Google Scholar
  30. Katsyri, J., Saalasti, S., Tiippana, K., von Wendt, L., & Sams, M. (2008). Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome. Neuropsychologia, 46(7), 1888–1897.CrossRefPubMedGoogle Scholar
  31. Kelly, D. H. (1977). Visual contrast sensitivity. Journal of Modern Optics, 24(2), 107–129.CrossRefGoogle Scholar
  32. Kemner, C., & van Engeland, H. (2006). ERPs and eye movements reflect atypical visual perception in pervasive developmental disorder. Journal of Autism and Developmental Disorders, 36(1), 45–54.CrossRefPubMedGoogle Scholar
  33. Koh, H. C., Milne, E., & Dobkins, K. R. (in prep). Magnocellular and parvocellular pathway functioning and their contribution to motion processing in adolescents with ASD and their siblings.Google Scholar
  34. Lahaie, A., Mottron, L., Arguin, M., Berthiaume, C., Jemel, B., & Saumier, D. (2006). Face perception in high-functioning autistic adults: Evidence for superior processing of face parts, not for a configural face-processing deficit. Neuropsychology, 20(1), 30–41.CrossRefPubMedGoogle Scholar
  35. Liu, X. Q., Paterson, A. D., & Szatmari, P. (2008). Genome-wide linkage analyses of quantitative and categorical autism subphenotypes. Biological Psychiatry, 64(7), 561–570.CrossRefPubMedGoogle Scholar
  36. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule—generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.CrossRefPubMedGoogle Scholar
  37. Milne, E., Griffiths, H., Buckley, D., & Scope, A. (2009a). Vision in children and adolescents with autistic spectrum disorder: Evidence for reduced convergence. Journal of Autism and Developmental Disorders, 39(7), 965–975.CrossRefPubMedGoogle Scholar
  38. Milne, E., Scope, A., Pascalis, O., Buckley, D., & Makeig, S. (2009b). Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biological Psychiatry, 65(1), 22–30.CrossRefPubMedGoogle Scholar
  39. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.CrossRefPubMedGoogle Scholar
  40. Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. A. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMedGoogle Scholar
  41. Movshon, J. A., & Kiorpes, L. (1988). Analysis of the development of spatial contrast sensitivity in monkey and human infants. Journal of the Optical Society of America Association, 5(12), 2166–2172.CrossRefGoogle Scholar
  42. Pellicano, E., Gibson, L., Mayberry, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 1044–1053.CrossRefPubMedGoogle Scholar
  43. Ridder, W. H. (2004). Methods of visual acuity determination with the spatial frequency sweep visual evoked potential. Documenta Ophthalmologica, 109(3), 239–247.CrossRefPubMedGoogle Scholar
  44. Risi, S., Lord, C., Gotham, K., Corsello, C., Chrysler, C., Szatmari, P., et al. (2006). Combining information from multiple sources in the diagnosis of autism spectrum disorders. Journal of Amer Academy of Child & Adolescent Psychiatry, 45(9), 1094–1103.CrossRefGoogle Scholar
  45. Robson, J. G. (1966). Spatial and temporal contrast-sensitivity functions of the visual system. Journal of Optical Society America, 56(8), 1141–1142.CrossRefGoogle Scholar
  46. Rutter, M., Bailey, A., Lord, C., & Berument, S. K. (2003). Social communication questionnaire. Los Angeles, CA: Western Psychological Services.Google Scholar
  47. Scharre, J. E., & Creedon, M. P. (1992). Assessment of visual function in autistic children. Optometry and Vision Science, 69(6), 433–439.CrossRefPubMedGoogle Scholar
  48. Tadevosyan-Leyfer, O., Dowd, M., Mankoski, R., Winklosky, B., Putnam, S., McGrath, L., et al. (2003). A principal components analysis of the autism diagnostic interview-revised. Journal of American Academy of Child and Adolescent Psychiatry, 42(7), 864–872.CrossRefGoogle Scholar
  49. Tager-Flusberg, H., & Joseph, R. M. (2005). Identifying neurocognitive phenotypes in autism. Philisophical Transactions of the Royal Society London B Biological Science, 358(1430), 303–314.CrossRefGoogle Scholar
  50. Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. Journal of the Acoustical Society of America, 41(4A), 782–787.CrossRefGoogle Scholar
  51. Virsu, V., & Rovamo, J. (1979). Visual resolution, contrast sensitivity, and the cortical magnification factor. Experimental Brain Research, 37(3), 475–494.CrossRefGoogle Scholar
  52. Watson, A. B. (1979). Probability summation over time. Vision Research, 19(5), 515–522.CrossRefPubMedGoogle Scholar
  53. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: Harcourt Assessment.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PsychologyThe University of SheffieldSheffieldUK
  2. 2.Department of PsychologyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations