Journal of Autism and Developmental Disorders

, Volume 40, Issue 3, pp 300–316 | Cite as

Cerebellum, Language, and Cognition in Autism and Specific Language Impairment

  • Steven M. Hodge
  • Nikos Makris
  • David N. Kennedy
  • Verne S. CavinessJr.
  • James Howard
  • Lauren McGrath
  • Shelly Steele
  • Jean A. Frazier
  • Helen Tager-Flusberg
  • Gordon J. Harris
Original Paper


We performed cerebellum segmentation and parcellation on magnetic resonance images from right-handed boys, aged 6–13 years, including 22 boys with autism [16 with language impairment (ALI)], 9 boys with Specific Language Impairment (SLI), and 11 normal controls. Language-impaired groups had reversed asymmetry relative to unimpaired groups in posterior-lateral cerebellar lobule VIIIA (right side larger in unimpaired groups, left side larger in ALI and SLI), contralateral to previous findings in inferior frontal cortex language areas. Lobule VIIA Crus I was smaller in SLI than in ALI. Vermis volume, particularly anterior I–V, was decreased in language-impaired groups. Language performance test scores correlated with lobule VIIIA asymmetry and with anterior vermis volume. These findings suggest ALI and SLI subjects show abnormalities in neurodevelopment of fronto-corticocerebellar circuits that manage motor control and the processing of language, cognition, working memory, and attention.


Autism Specific language impairment Cerebellum Broca’s area Asymmetry 



This work was supported in part by a grant from NIDCD to Drs. Tager-Flusberg and Harris, U19/PO1 DC 03610, which is part of the NICHD/NIDCD funded Collaborative Programs of Excellence in Autism; a grant from the NIMH to Dr. Jean Frazier, K08 MH01573; and by a Young Investigator Award funded by NARSAD and a grant from ALSA to Dr. Nikos Makris. The authors also thank Trinity Urban and Joyce Miller for proofreading comments on the manuscript.


  1. Ackermann, H., Wildgruber, D., Daum, I., & Grodd, W. (1998). Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neuroscience Letters, 247, 187–190.PubMedGoogle Scholar
  2. Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., et al. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. American Journal of Human Genetics, 82, 150–159.PubMedGoogle Scholar
  3. Alarcon, M., Cantor, R. M., Liu, J., Gilliam, T. C., & Geschwind, D. H. (2002). Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. American Journal of Human Genetics, 70, 60–71.PubMedGoogle Scholar
  4. Almasy, L., & Blangero, J. (2001). Endophenotypes as quantitative risk factors for psychiatric disease: Rationale and study design. American Journal of Medical Genetics, 105, 42–44.PubMedGoogle Scholar
  5. APA. (1994). DSM-IV: Diagnostic and statistic manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press.Google Scholar
  6. Arnold, J. B., Liow, J. S., Schaper, K. A., Stern, J. J., Sled, J. G., Shattuck, D. W., et al. (2001). Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. Neuroimage, 13, 931–943.PubMedGoogle Scholar
  7. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedGoogle Scholar
  8. Barrett, S., Beck, J. C., Bernier, R., Bisson, E., Braun, T. A., Casavant, T. L., et al. (1999). An autosomal genomic screen for autism. Collaborative linkage study of autism. American Journal of Medical Genetics, 88, 609–615.PubMedGoogle Scholar
  9. Bartlett, C. W., Flax, J. F., Logue, M. W., Vieland, V. J., Bassett, A. S., Tallal, P., et al. (2002). A major susceptibility locus for specific language impairment is located on 13q21. American Journal of Human Genetics, 71, 45–55.PubMedGoogle Scholar
  10. Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.PubMedGoogle Scholar
  11. Benson, R. R., FitzGerald, D. B., LeSueur, L. L., Kennedy, D. N., Kwong, K. K., Buchbinder, B. R., et al. (1999). Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology, 52, 798–809.PubMedGoogle Scholar
  12. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353–362.PubMedGoogle Scholar
  13. Bishop, D. V. (2003). Autism and specific language impairment: Categorical distinction or continuum? Novartis Foundation Symposium, 251, 213–226 (discussion 226–234, 281–297).Google Scholar
  14. Bobylova, M. Y., Petrukhin, A. S., Dunaevskaya, G. N., Piliya, S. V., & Il’ina, E. S. (2007). Clinical-psychological characteristics of children with dysgenesis of the cerebellar vermis. Neuroscience and Behavioral Physiology, 37, 755–759.PubMedGoogle Scholar
  15. Boddaert, N., Chabane, N., Belin, P., Bourgeois, M., Royer, V., Barthelemy, C., et al. (2004). Perception of complex sounds in autism: Abnormal auditory cortical processing in children. American Journal of Psychiatry, 161, 2117–2120.PubMedGoogle Scholar
  16. Botez-Marquard, T., & Botez, M. I. (1997). Olivopontocerebellar atrophy and Friedreich’s ataxia: Neuropsychological consequences of bilateral versus unilateral cerebellar lesions. In R. J. Bradly, R. A. Harris & P. Jenner (Series Eds.), J. D. Schmahmann (Vol. Ed.), International review of neurobiology, Vol. 41. The cerebellum and cognition (pp. 387–410). San Diego: Academic Press.Google Scholar
  17. Bradford, Y., Haines, J., Hutcheson, H., Gardiner, M., Braun, T., Sheffield, V., et al. (2001). Incorporating language phenotypes strengthens evidence of linkage to autism. American Journal of Medical Genetics, 105, 539–547.PubMedGoogle Scholar
  18. Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61, 557–569.PubMedGoogle Scholar
  19. Breiter, H. C., & Gasic, G. P. (2004). A general circuitry processing reward/aversion information and its implications for neuropsychiatric illness. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1043–1065). Cambridge: MIT.Google Scholar
  20. Burroni, L., Orsi, A., Monti, L., Hayek, Y., Rocchi, R., & Vattimo, A. G. (2008). Regional cerebral blood flow in childhood autism: A SPET study with SPM evaluation. Nuclear Medicine Communications, 29, 150–156.PubMedGoogle Scholar
  21. Catts, H., Bridges, M., Little, T., & Tomblin, J. B. (2008). Reading achievement growth in children with language impairments. Journal of Speech Language and Hearing Research, 51, 1569–1579.Google Scholar
  22. Caviness, V. S., Jr., Meyer, J. W., Makris, N., & Kennedy, D. N. (1996). MRI-based topographic parcellation of the human neocortex: An anatomically specified method with estimate of reliability. Journal of Cognitive Neuroscience, 8, 566–587.Google Scholar
  23. Chheda, M., Sherman, J., & Schmahmann, J. D. (2002). Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology, 58, 356.Google Scholar
  24. Chiron, C., Leboyer, M., Leon, F., Jambaque, I., Nuttin, C., & Syrota, A. (1995). SPECT of the brain in childhood autism: Evidence for a lack of normal hemispheric asymmetry. Developmental Medicine and Child Neurology, 37, 849–860.PubMedGoogle Scholar
  25. Conti-Ramsden, G. (2003). Processing and linguistic markers in young children with specific language impairment (sli). Journal of Speech, Language and Hearing Research, 46(5), 1029–1037.Google Scholar
  26. Conti-Ramsden, G., & Botting, N. (1999). Classification of children with specific language impairment: Longitudinal considerations. Journal of Speech, Language, and Hearing Research, 42, 1195–1204.PubMedGoogle Scholar
  27. Courchesne, E. (1999). An MRI study of autism: The cerebellum revisited. Neurology, 52, 1106–1107.PubMedGoogle Scholar
  28. Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G. A., Lincoln, A. J., Haas, R. H., et al. (1994). Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: Identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR. American Journal of Roentgenology, 162, 123–130.PubMedGoogle Scholar
  29. Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318, 1349–1354.PubMedGoogle Scholar
  30. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.PubMedGoogle Scholar
  31. Dawson, G., Finley, C., Phillips, S., & Galpert, L. (1986). Hemispheric specialization and the language abilities of autistic children. Child Development, 57, 1440–1453.PubMedGoogle Scholar
  32. De Fosse, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., McGrath, L., et al. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56, 757–766.PubMedGoogle Scholar
  33. Dean, R. S. (1978). Cerebral laterality and reading comprehension. Neuropsychologia, 16, 633–636.PubMedGoogle Scholar
  34. Dean, R. S. (1982). Assessing patterns of lateral preference. Journal of Clinical Neuropsychology, 4, 124–128.Google Scholar
  35. Desmond, J. E., & Fiez, J. A. (1998). Neuroimaging studies of the cerebellum: Language, learning and memory. Trends in Cognitive Science, 2, 355–362.Google Scholar
  36. Desmond, J. E., Gabrieli, J. D., Wagner, A. D., Ginier, B. L., & Glover, G. H. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. Journal of Neuroscience, 17, 9675–9685.PubMedGoogle Scholar
  37. Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test (3rd ed.). Circle Pines, MN: American Guidance Service.Google Scholar
  38. Eckert, M. A., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J., & Berninger, V. W. (2003). Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain, 126, 482–494.PubMedGoogle Scholar
  39. Elliot, C. D. (1990). Differential ability scales. San Antonio, TX: The Psychological Corporation, Harcourt Brace and Co.Google Scholar
  40. Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain, 115(Pt 1), 155–178.PubMedGoogle Scholar
  41. Fiez, J. A., & Raichle, M. E. (1997). Linguistic processing. In R. J. Bradly, R. A. Harris & P. Jenner (Series Eds.), J. D. Schmahmann (Vol. Ed.), International review of neurobiology: Vol. 41. The cerebellum and cognition (pp. 233–254). San Diego: Academic Press.Google Scholar
  42. Fisher, S. E., Lai, C. S., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57–80.PubMedGoogle Scholar
  43. Folstein, S. E., Santangelo, S. L., Gilman, S. E., Piven, J., Landa, R., Lainhart, J., et al. (1999). Predictors of cognitive test patterns in autism families. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 1117–1128.Google Scholar
  44. Fombonne, E., Bolton, P., Prior, J., Jordan, H., & Rutter, M. (1997). A family study of autism: cognitive patterns and levels in parents and siblings. Journal of Child Psychology and Psychiatry and Allied Disciplines, 38, 667–683.Google Scholar
  45. Foundas, A. L., Eure, K. F., Luevano, L. F., & Weinberger, D. R. (1998). MRI asymmetries of Broca’s area: The pars triangularis and pars opercularis. Brain and Language, 64, 282–296.PubMedGoogle Scholar
  46. Galaburda, A. M., Rosen, G. D., & Sherman, G. F. (1990). Individual variability in cortical organization: Its relationship to brain laterality and implications to function. Neuropsychologia, 28, 529–546.PubMedGoogle Scholar
  47. Galloway, J. (1990). Developmental biology. A handle on handedness. Nature, 346, 223–224.PubMedGoogle Scholar
  48. Gebhart, A. L., Petersen, S. E., & Thach, W. T. (2002). Role of the posterolateral cerebellum in language. Annals of the New York Academy of Sciences, 978, 318–333.PubMedGoogle Scholar
  49. Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 77–85.PubMedGoogle Scholar
  50. Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. Journal of Comparative Neurology, 366, 223–230.PubMedGoogle Scholar
  51. Hardan, A. Y., Minshew, N. J., Harenski, K., & Keshavan, M. S. (2001). Posterior fossa magnetic resonance imaging in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 666–672.PubMedGoogle Scholar
  52. Harris, G. J., Chabris, C. F., Clark, J., Urban, T., Aharon, I., Steele, S., et al. (2006). Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging. Brain and Cognition, 61, 54–68.PubMedGoogle Scholar
  53. Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., & Kuroda, Y. (1993). Brainstem and cerebellar vermis involvement in autistic children. Journal of Child Neurology, 8, 149–153.PubMedGoogle Scholar
  54. Heath, R. G. (1977). Modulation of emotion with a brain pacemamer. Treatment for intractable psychiatric illness. Journal of Nervous and Mental Disease, 165, 300–317.PubMedGoogle Scholar
  55. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52, 588–596.PubMedGoogle Scholar
  56. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192.PubMedGoogle Scholar
  57. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.PubMedGoogle Scholar
  58. Hubrich-Ungureanu, P., Kaemmerer, N., Henn, F. A., & Braus, D. F. (2002). Lateralized organization of the cerebellum in a silent verbal fluency task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 319, 91–94.PubMedGoogle Scholar
  59. Hyatt, B. A., & Yost, H. J. (1998). The left–right coordinator: the role of Vg1 in organizing left–right axis formation. Cell, 93, 37–46.PubMedGoogle Scholar
  60. IMGSAC. (1998). A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International molecular genetic study of autism consortium. Human Molecular Genetics, 7, 571–578.Google Scholar
  61. Jansen, A., Floel, A., Van Randenborgh, J., Konrad, C., Rotte, M., Forster, A. F., et al. (2005). Crossed cerebro-cerebellar language dominance. Human Brain Mapping, 24, 165–172.PubMedGoogle Scholar
  62. Joseph, R. M., Steele, S. D., Meyer, E., & Tager-Flusberg, H. (2005). Self-ordered pointing in children with autism: Failure to use verbal mediation in the service of working memory? Neuropsychologia, 43, 1400–1411.PubMedGoogle Scholar
  63. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127, 1811–1821.PubMedGoogle Scholar
  64. Kaufmann, W. E., Cooper, K. L., Mostofsky, S. H., Capone, G. T., Kates, W. R., Newschaffer, C. J., et al. (2003). Specificity of cerebellar vermian abnormalities in autism: A quantitative magnetic resonance imaging study. Journal of Child Neurology, 18, 463–470.PubMedGoogle Scholar
  65. Keller, S. S., Highley, J. R., Garcia-Finana, M., Sluming, V., Rezaie, R., & Roberts, N. (2007). Sulcal variability, stereological measurement and asymmetry of Broca’s area on MR images. Journal of Anatomy, 211, 534–555.PubMedGoogle Scholar
  66. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci, 23, 8432–8444.PubMedGoogle Scholar
  67. Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57, 645–652.PubMedGoogle Scholar
  68. Kemper, T. L., & Bauman, M. L. (2002). Neuropathology of infantile autism. Molecular Psychiatry, 7(Suppl 2), S12–S13.PubMedGoogle Scholar
  69. Kennedy, D. N., Filipek, P. A., & Caviness, V. S. (1989). Autonomic segmentation and volumetric calculations in nuclear magnetic resonance imaging. IEEE Transactions on Medical Imaging, 8, 1–7.PubMedGoogle Scholar
  70. Kibby, M. Y., Fancher, J. B., Markanen, R., & Hynd, G. W. (2008). A quantitative magnetic resonance imaging analysis of the cerebellar deficit hypothesis of dyslexia. J Child Neurol, 23, 368–380.PubMedGoogle Scholar
  71. Kjelgaard, M. M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: Implications for genetic subgroups. Language and Cognitive Processes, 16, 287–308.PubMedGoogle Scholar
  72. Kleiman, M. D., Neff, S., & Rosman, N. P. (1992). The brain in infantile autism: Are posterior fossa structures abnormal? Neurology, 42, 753–760.PubMedGoogle Scholar
  73. Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY: A developmental neuropsychological assessment. San Antonio, TX: The Pyschological Corporation, Harcourt Brace and Co.Google Scholar
  74. Kulesza, R. J., & Mangunay, K. (2008). Morphological features of the medial superior olive in autism. Brain Research, 1200, 132–137.PubMedGoogle Scholar
  75. Leggio, M. G., Silveri, M. C., Petrosini, L., & Molinari, M. (2000). Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. Journal of Neurology, Neurosurgery and Psychiatry, 69, 102–106.Google Scholar
  76. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.PubMedGoogle Scholar
  77. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: Its computing, cognitive, and language skills. Behavioral Brain Research, 44, 113–128.Google Scholar
  78. Leonard, C. M., Eckert, M. A., Lombardino, L. J., Oakland, T., Kranzler, J., Mohr, C. M., et al. (2001). Anatomical risk factors for phonological dyslexia. Cereb Cortex, 11, 148–157.PubMedGoogle Scholar
  79. Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain, 123(Pt 5), 1041–1050.PubMedGoogle Scholar
  80. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedGoogle Scholar
  81. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.PubMedGoogle Scholar
  82. Lowe, L. A., Supp, D. M., Sampath, K., Yokoyama, T., Wright, C. V., Potter, S. S., et al. (1996). Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus. Nature, 381, 158–161.PubMedGoogle Scholar
  83. Makris, N., Gasic, G. P., Seidman, L. J., Goldstein, J. M., Gastfriend, D. R., Elman, I., et al. (2004). Decreased absolute amygdala volume in cocaine addicts. Neuron, 44, 729–740.PubMedGoogle Scholar
  84. Makris, N., Hodge, S. M., Haselgrove, C., Kennedy, D. N., Dale, A., Fischl, B., et al. (2003). Human cerebellum: surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 15, 584–599.PubMedGoogle Scholar
  85. Makris, N., Schlerf, J. E., Hodge, S. M., Haselgrove, C., Albaugh, M. D., Seidman, L. J., et al. (2005). MRI-based surface-assisted parcellation of human cerebellar cortex: An anatomically specified method with estimate of reliability. Neuroimage, 25, 1146–1160.PubMedGoogle Scholar
  86. Mathiak, K., Hertrich, I., Grodd, W., & Ackermann, H. (2002). Cerebellum and speech perception: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 14, 902–912.PubMedGoogle Scholar
  87. Metter, E. J., Kempler, D., Jackson, C. A., Hanson, W. R., Riege, W. H., Camras, L. R., et al. (1987). Cerebellar glucose metabolism in chronic aphasia. Neurology, 37, 1599–1606.PubMedGoogle Scholar
  88. Molinari, M., Leggio, M. G., & Silveri, M. C. (1997). Verbal fluency and agrammatism. In R. J. Bradly, R. A. Harris & P. Jenner (Series Eds.), J. D. Schmahmann (Vol. Ed.), International Review of Neurobiology: Vol. 41. The Cerebellum and Cognition (pp. 325–339). San Diego: Academic Press.Google Scholar
  89. Muller, R. A., Behen, M. E., Rothermel, R. D., Chugani, D. C., Muzik, O., Mangner, T. J., et al. (1999). Brain mapping of language and auditory perception in high-functioning autistic adults: A PET study. Journal of Autism and Developmental Disorders, 29, 19–31.PubMedGoogle Scholar
  90. Neau, J. P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102, 363–370.PubMedGoogle Scholar
  91. O’Brien, E. K., Zhang, X., Nishimura, C., Tomblin, J. B., & Murray, J. C. (2003). Association of specific language impairment (SLI) to the region of 7q31. American Journal of Human Genetics, 72, 1536–1543.PubMedGoogle Scholar
  92. Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., et al. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain, 123(Pt 9), 1838–1844.PubMedGoogle Scholar
  93. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedGoogle Scholar
  94. Orvaschel, H., & Puig-Antich, J. (1987). Schedule for affective disorders and schizophrenia for school-age children-epidemiologic version (K-SADS-E) (4th ed.). Fort Lauderdale, FL: Nova University, Center for Psychological Studies.Google Scholar
  95. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585–589.PubMedGoogle Scholar
  96. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1989). Positron emission tomographic studies of the processing of single-words. Journal of Cognitive Neuroscience, 1, 153–170.Google Scholar
  97. Piedra, M. E., Icardo, J. M., Albajar, M., Rodriguez-Rey, J. C., & Ros, M. A. (1998). Pitx2 participates in the late phase of the pathway controlling left–right asymmetry. Cell, 94, 319–324.PubMedGoogle Scholar
  98. Piven, J., & Arndt, S. (1995). The cerebellum and autism. Neurology, 45, 398–402.PubMedGoogle Scholar
  99. Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 1145–1149.PubMedGoogle Scholar
  100. Piven, J., Nehme, E., Simon, J., Barta, P., Pearlson, G., & Folstein, S. E. (1992). Magnetic resonance imaging in autism: Measurement of the cerebellum, pons, and fourth ventricle. Biological Psychiatry, 31, 491–504.PubMedGoogle Scholar
  101. Piven, J., Saliba, K., Bailey, J., & Arndt, S. (1997). An MRI study of autism: The cerebellum revisited. Neurology, 49, 546–551.PubMedGoogle Scholar
  102. Pollack, I. F., Polinko, P., Albright, A. L., Towbin, R., & Fitz, C. (1995). Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: Incidence and pathophysiology. Neurosurgery, 37, 885–893.PubMedCrossRefGoogle Scholar
  103. Rae, C., Harasty, J. A., Dzendrowskyj, T. E., Talcott, J. B., Simpson, J. M., Blamire, A. M., et al. (2002). Cerebellar morphology in developmental dyslexia. Neuropsychologia, 40, 1285–1292.PubMedGoogle Scholar
  104. Rapin, I. (1999). Autism in search of a home in the brain. Neurology, 52, 902–904.PubMedGoogle Scholar
  105. Rapin, I. (Vol. Ed.). (1996). Clinics in developmental medicine:Vol. 139. Preschool children with inadequate communication. London: Mac Keith Press.Google Scholar
  106. Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., et al. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. American Journal of Psychiatry, 143, 862–866.PubMedGoogle Scholar
  107. Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: Evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123(Pt 5), 1051–1061.PubMedGoogle Scholar
  108. Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., & Tregellas, J. R. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6, 56.PubMedGoogle Scholar
  109. Roskies, A. L., Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (2001). Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. Journal of Cognitive Neuroscience, 13, 829–843.PubMedGoogle Scholar
  110. Ruser, T. F., Arin, D., Dowd, M., Putnam, S., Winklosky, B., Rosen-Sheidley, B., et al. (2007). Communicative competence in parents of children with autism and parents of children with specific language impairment. Journal of Autism and Developmental Disorders, 37, 1323–1336.PubMedGoogle Scholar
  111. Santangelo, S. L., & Folstein, S. E. (1999). Autism: A genetic perspective. In H. Tager-Flusberg (Ed.), Neurodevelopmental disorders (pp. 431–447). Cambridge, MA: MIT.Google Scholar
  112. Schmahmann, J. D. (1991). An emerging concept. The cerebellar contribution to higher function. Archives of Neurology, 48, 1178–1187.PubMedGoogle Scholar
  113. Schmahmann, J. D. (1996). From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.PubMedGoogle Scholar
  114. Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.Google Scholar
  115. Schmahmann, J. D. (2001). The cerebrocerebellar system: Anatomic substrates of the cerebellar contribution to cognition and emotion. International Review of Psychiatry, 13, 247–260.Google Scholar
  116. Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 367–378.PubMedGoogle Scholar
  117. Schmahmann, J. D., Doyon, J., Toga, A., Petrides, M., & Evans, A. (2000). MRI atlas of the human cerebellum. San Diego: Academic Press.Google Scholar
  118. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579.PubMedGoogle Scholar
  119. Semel, E., Wiig, E. H., & Secord, W. A. (1995). Clinical evaluation of language fundamentals (3rd ed.). San Antonio, TX: The Psychological Corporation, Harcourt Brace and Co.Google Scholar
  120. Silveri, M. C., Leggio, M. G., & Molinari, M. (1994). The cerebellum contributes to linguistic production: A case of agrammatic speech following a right cerebellar lesion. Neurology, 44, 2047–2050.PubMedGoogle Scholar
  121. Slifer, K. J., Cataldo, M. F., Cataldo, M. D., Llorente, A. M., & Gerson, A. C. (1993). Behavior analysis of motion control for pediatric neuroimaging. Journal of Applied Behavior Analysis, 26, 469–470.PubMedGoogle Scholar
  122. Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23, 289–299.PubMedGoogle Scholar
  123. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44, 489–501.PubMedGoogle Scholar
  124. Sun, T., Patoine, C., Abu-Khalil, A., Visvader, J., Sum, E., Cherry, T. J., et al. (2005). Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science, 308, 1794–1798.PubMedGoogle Scholar
  125. Tager-Flusberg, H. (2003). Language impairments in children with complex neurodevelopmental disorders: The case of autism. In Y. Levy & J. C. Schaeffer (Eds.), Language competence across populations: Toward a definition of specific language impairment (pp. 297–321). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  126. Tager-Flusberg, H. (2006). Defining language phenotypes in autism. Clinical Neuroscience Research, 6, 219–224.Google Scholar
  127. Tager-Flusberg, H., & Caronna, E. (2007). Language disorders: Autism and other pervasive developmental disorders. Pediatric Clinics of North America, 54, 469–481. vi.PubMedGoogle Scholar
  128. Tager-Flusberg, H., & Cooper, J. (1999). Present and future possibilities for defining a phenotype for specific language impairment. Journal of Speech, Language, and Hearing Research, 42(5), 1275–1278.PubMedGoogle Scholar
  129. Tager-Flusberg, H., & Joseph, R. M. (2003). Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 303–314.PubMedGoogle Scholar
  130. Tager-Flusberg, H., Paul, R., & Lord, C. E. (2005). Language and communication in autism. In F. Volkmar, R. Paul, A. Klin, & D. J. Cohen (Eds.), Handbook of autism and pervasive developmental disorders: Vol. 1. Diagnosis, development, neurobiology, and behavior (3rd ed., pp. 335–364). New York: Wiley.Google Scholar
  131. Takeuchi, M., Harada, M., Matsuzaki, K., Nishitani, H., & Mori, K. (2004). Difference of signal change by a language task on autistic patients using functional MRI. The Journal of Medical Investigation: JMI, 51, 59–62.PubMedGoogle Scholar
  132. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Inc.Google Scholar
  133. Tomblin, J. B., Hafeman, L. L., & O’Brien, M. (2003). Autism and autism risk in siblings of children with specific language impairment. International Journal of Language and Communication Disorders, 38, 235–250.PubMedGoogle Scholar
  134. Wechsler, D. (1991). The wechsler intelligence scale for children (3rd ed.). San Antonio, TX: The Psychological Corporation, Harcourt Brace and Co.Google Scholar
  135. Williams, K. T. (1997). Expressive vocabulary test. Circle Pines, MN: American Guidance Service.Google Scholar
  136. Worth, A. J., Makris, N., Meyer, J. W., Caviness, V. S., Jr., & Kennedy, D. N. (1998a). Semiautomatic segmentation of brain exterior in magnetic resonance images driven by empirical procedures and anatomical knowledge. Medical Image Analysis, 2, 315–324.PubMedGoogle Scholar
  137. Worth, A. J., Makris, N., Patti, M. R., Goodman, J. M., Hoge, E. A., Caviness, V. S., Jr., et al. (1998b). Precise segmentation of the lateral ventricles and caudate nucleus in MR brain images using anatomically driven histograms [letter]. IEEE Transactions on Medical Imaging, 17, 303–310.PubMedGoogle Scholar
  138. Xiang, H., Lin, C., Ma, X., Zhang, Z., Bower, J. M., Weng, X., et al. (2003). Involvement of the cerebellum in semantic discrimination: An fMRI study. Human Brain Mapping, 18, 208–214.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Steven M. Hodge
    • 1
    • 2
  • Nikos Makris
    • 1
  • David N. Kennedy
    • 1
  • Verne S. CavinessJr.
    • 1
  • James Howard
    • 1
  • Lauren McGrath
    • 3
  • Shelly Steele
    • 3
  • Jean A. Frazier
    • 4
    • 5
  • Helen Tager-Flusberg
    • 3
  • Gordon J. Harris
    • 2
  1. 1.Center for Morphometric AnalysisMassachusetts General HospitalBostonUSA
  2. 2.Radiology Computer Aided Diagnostics LaboratoryMassachusetts General HospitalBostonUSA
  3. 3.Lab of Cognitive NeuroscienceBoston University School of MedicineBostonUSA
  4. 4.Department of PsychiatryHarvard Medical SchoolBostonUSA
  5. 5.Center for Child and Adolescent Development, Department of PsychiatryCambridge Health AllianceCambridgeUSA

Personalised recommendations