Quantitative Architectural Analysis: A New Approach to Cortical Mapping

  • Axel Schleicher
  • Patricia Morosan
  • Katrin Amunts
  • Karl Zilles
Original Paper

Abstract

Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, objective mapping procedures based on quantitative cytoarchitecture have been generated. As a result, new maps for various species including man were established. In our contribution, principles of quantitative cytoarchitecture and algorithm-based cortical mapping are described for a cytoarchitectural parcellation of the human auditory cortex. Defining cortical borders based on quantified changes in cortical lamination is the decisive step towards a novel, highly improved probabilistic brain atlas.

Keywords

Cytoarchitecture Gray level index Cortical area Border detection Brain mapping 

References

  1. Adhami, H. (1973). Die photometrische Bestimmung des Cortexzell- und Graugehalts auf der Grundlage des Nissl-Bildes. Acta anatomica, 84(60), 1–52.Google Scholar
  2. Amunts, K., Malicovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000). Brodmann’s areas 17 and 18 brought into stereotactic space–where and how variable? NeuroImage, 11, 66–84.PubMedCrossRefGoogle Scholar
  3. Amunts, K., Schlaug, G., Schleicher, A., Steinmetz, H., Dabringhaus, A., Roland, P. E., et al. (1996). Asymmetry in the human motor cortex and handedness. NeuroImage, 4, 216–222.PubMedCrossRefGoogle Scholar
  4. Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H. B. M., & Zilles, K. (1999). Broca’s region revisited: Cytoarchitecture and intersubject variability. Journal of Comparative Neurology, 412, 319–341.PubMedCrossRefGoogle Scholar
  5. Amunts, K., Schleicher, A., & Zilles, K. (1997a). Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. Journal of Brain Research, 38, 247–260.PubMedGoogle Scholar
  6. Amunts, K., Schleicher, A., & Zilles, K. (2002). Architectonic mapping of the human cerebral cortex. In A. Schüz & R. Miller (Eds.), Cortical areas: Unity and diversity (pp. 29–52). New York: Taylor & Francis.Google Scholar
  7. Amunts, K., Schleicher, A., & Zilles, K. (2007). Cytoarchitecture of the cerebral cortex–more than localization. NeuroImage, 37, 1061–1065.PubMedCrossRefGoogle Scholar
  8. Amunts, K., Schmidt-Passos, F., Schleicher, A., & Zilles, K. (1997b). Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4. Anatomy and Embryology, 196, 393–402.PubMedCrossRefGoogle Scholar
  9. Amunts, K., Weiss, P. H., Mohlberg, H., Pieperhoff, P., Eickhoff, S., Gurd, J. M., et al. (2004). Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space–the roles of Brodmann areas 44 and 45. NeuroImage, 22, 42–56.PubMedCrossRefGoogle Scholar
  10. Amunts, K., & Zilles, K. (2006). Atlases of the human brain: Tools for functional neuroimaging. In L. Zaborsky, F. G. Wouterlood, & J. L. Lanciego (Eds.), Neuroanatomical tract tracing 3: Molecules, neurons, and systems (pp. 566–603). New York: Springer.CrossRefGoogle Scholar
  11. Annese, J., Pitiota, A., Dinova, I. D., & Toga, A. W. (2004). A myelo-architectonic method for the structural classification of cortical areas. NeuroImage, 21, 15–26.PubMedCrossRefGoogle Scholar
  12. Armstrong, E., Zilles, K., Schlaug, G., & Schleicher, A. (1986). Comparative aspects of the primate posterior cingulate cortex. Journal of Comparative Neurology, 253, 539–548.PubMedCrossRefGoogle Scholar
  13. Bartels, P. H. (1979). Numerical evaluation of cytologic data II. Comparison of profiles. Analytical and quantitative cytology, 1, 77–83.PubMedGoogle Scholar
  14. Bok, S. T., & van Kip, M. J. E. (1939). The size of the body and the size and the number of the nerve cells in the cerebral cortex. Acta Ned Morphology, 3, 1–22.Google Scholar
  15. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J.A. Barth.Google Scholar
  16. Burwell, R. D. (2001). Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. Journal of Comparative Neurology, 437, 17–41.PubMedCrossRefGoogle Scholar
  17. Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn and evolution of the brain. Brain, Behavior and Evolution, 60, 125–151.PubMedCrossRefGoogle Scholar
  18. Buxhoeveden, D. P., Switala, A. E., Roy, E., & Casanova, M. F. (2000). Quantitative analysis of cell columns in the cerebral cortex. Journal of Neuroscience Methods, 97, 7–17.PubMedCrossRefGoogle Scholar
  19. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology, 17, 515–521.PubMedCrossRefGoogle Scholar
  20. Casanova, M. F., & Switala, A. E. (2005). Minicolumnar morphometry: Computerized image analysis. In M. F. Casanova (Ed.), Neocortical modularity and the cell minicolumn (pp. 161–179). New York: Nova Science Publishers.Google Scholar
  21. Casanova, M. F., Trippe, J., & Switala, A. (2007). A temporal continuity to the vertical organization of the human neocortex. Cerebral Cortex, 17, 130–137.PubMedCrossRefGoogle Scholar
  22. Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303.PubMedCrossRefGoogle Scholar
  23. Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33, 430–448.PubMedCrossRefGoogle Scholar
  24. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.PubMedCrossRefGoogle Scholar
  25. de Vos, K., Pool, C. W., Sanz-Arigita, E. J., & Uylings, H. B. M. (2004). Curvature effects in observer independent cytoarchitectonic mapping of the human cerebral cortex. Research Center Jülich, Germany: Proceedings of the Second Vogt-Brodmann Symposium. 44.Google Scholar
  26. Eickhoff, S. B., Schleicher, A., Zilles, K., & Amunts, K. (2006). The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral cortex, 16, 254–267.PubMedCrossRefGoogle Scholar
  27. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25, 1325–1335.PubMedCrossRefGoogle Scholar
  28. Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Bürgel, U., et al. (1996). Two different areas within the primary motor cortex of man. Nature, 382, 805–807.PubMedCrossRefGoogle Scholar
  29. Geyer, S., Schleicher, A., & Zilles, K. (1999). Areas 3a, 3b, and 1 of human primary somatosensory cortex. 1. Microstructural organization and interindividual variability. NeuroImage, 10(6), 3–83.Google Scholar
  30. Geyer, S., & Zilles, K. (2005). Functional neuroanatomy of human motor cortex. In H.-J. Freund, M. Jeannerod, M. Hallett, & R. Leiguarda (Eds.), Higher-order motor disorders (pp. 3–22). Oxford: Oxford University Press.Google Scholar
  31. Gundersen, H. J. G., Bendtsen, T. F., Korbo, L., Marcussen, N., Moeller, A., Nielsen, K., et al. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS, 96, 379–394.PubMedCrossRefGoogle Scholar
  32. Hackett, T. A., Preuss, T. M., & Kaas, J. H. (2001). Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology, 441, 197–222.PubMedCrossRefGoogle Scholar
  33. Haug, H. (1956). Remarks on the determination and significance of the gray cell coefficient. Journal of Comparative Neurology, 104, 473–492.PubMedCrossRefGoogle Scholar
  34. Haug, H. (1980). The significance of quantitative stereologic experimental procedures in pathology. Pathology, Research and Practice, 166, 144–164.PubMedGoogle Scholar
  35. Haug, H. (1981). On the proper use of point-counting and semiautomatic procedures in stereology. Microscopica Acta, 85, 141–152.PubMedGoogle Scholar
  36. Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333.PubMedCrossRefGoogle Scholar
  37. Hopf, A. (1968a). Photometric studies on the myeloarchitecture of the human temporal lobe. Journal fur Hirnforschung, 10, 285–297.PubMedGoogle Scholar
  38. Hopf, A. (1968b). Registration of the myeloarchitecture of the human frontal lobe with an extinction method. Journal fur Hirnforschung, 10, 259–269.PubMedGoogle Scholar
  39. Howard, C. V., & Reed, M. G. (1998). Unbiased stereology. Three dimensional measurement in microscopy. Oxford: BIOS Scientific.Google Scholar
  40. Hudspeth, A. J., Ruark, J. E., & Kelly, J. P. (1976). Cytoarchitectonic mapping by microdensitometry. Proceedings of the National Academy of Sciences of the United States of America, 73, 2928–2931.PubMedCrossRefGoogle Scholar
  41. Jones, S. E., Buchbinder, B. R., & Aharon, I. (2000). Three-dimensional mapping of cortical thickness using Laplace’s equation. Human Brain Mapping, 11, 12–32.PubMedCrossRefGoogle Scholar
  42. Kawasaki, Y., Schleicher, A., Falkai, P., Bogerts, B., & Zilles, K. (1997). Neuropathological postmortem investigation pf prefrontal cortex in schizophrenia. Biological Psychiatry, 42, 168.Google Scholar
  43. Kawasaki, Y., Vogeley, K., Jung, V., Tepest, R., Hütte, H., Schleicher, A., et al. (2000). Automated image analysis of distributed cytoarchitecture in Brodmann Area 10 in schizophrenia: A post-mortem study. Progress in Neuro-psychopharmacology & Biological Psychiatry, 24, 1093–1104.CrossRefGoogle Scholar
  44. Kretschmann, H. J., Tafesse, U., & Herrmann, A. (1982). Different volume changes of cerebral cortex and white matter during histological preparation. Microscopica Acta, 86, 14–24.Google Scholar
  45. Kruggel, F., Bruckner, M. K., Arendt, T., Wiggins, C. J., & von Cramon, D. Y. (2003). Analyzing the neocortical fine-structure. Medical Image Analysis, 7, 251–264.PubMedCrossRefGoogle Scholar
  46. Lübke, J., & Feldmeyer, D. (2007). Excitatory signal flow and connectivity in a cortical column: Focus on barrel cortex. Brain Structure & Function, 212, 3–17.CrossRefGoogle Scholar
  47. Luppino, G., Matelli, M., Camarda, R. M., Gallese, V., & Rizzolatti, G. (1991). Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. Journal of Comparative Neurology, 311, 463–482.PubMedCrossRefGoogle Scholar
  48. Malikovic, A., Amunts, K., Schleicher, A., Mohlberg, H., Eickhoff, S. B., Wilms, M., et al. (2007). Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cerebral Cortex, 17, 562–574.PubMedCrossRefGoogle Scholar
  49. Merker, B. (1983). Silver staining of cell bodies by means of physical development. Journal of Neuroscience Methods, 9, 235–241.PubMedCrossRefGoogle Scholar
  50. Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., & Zilles, K. (2001). Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage, 13, 684–701.PubMedCrossRefGoogle Scholar
  51. Morosan, P., Schleicher, A., Amunts, K., & Zilles, K. (2005). Multimodal architectonic mapping of human superior temporal gyrus. Anatomy and Embryology, 210, 401–406.PubMedCrossRefGoogle Scholar
  52. Mountcastle, V. B. (1978). An organizing principle for cerebral function: The unit module and the distributed system. In G. M. Edelmann & V. B. Mountcastle (Eds.), The mindful brain: Cortical organization and the group-selective theory of higher brain function (pp. 7–51). Cambridge: MIT.Google Scholar
  53. Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2005). Observing others: Multiple action representation in the frontal lobe. Science, 310, 332–366.PubMedCrossRefGoogle Scholar
  54. Palomero-Gallagher, N., Mohlberg, H., Zilles, K., & Vogt, B. (2008). Cytology and receptor architecture of human anterior cingulate cortex. Journal of Comparative Neurology, 508, 906–926.PubMedCrossRefGoogle Scholar
  55. Pitiot, A., Bardinet, E., Thompson, P. M., & Malandain, G. (2006). Piecewise affine registration of biological images for volume reconstruction. Medical Image Analysis, 10, 465–483.PubMedCrossRefGoogle Scholar
  56. Rehkämper, G., Zilles, K., & Schleicher, A. (1984). A quantitative approach to cytoarchitectonics: IX. The areal pattern of the hyperstriatum ventrale in the domestic pigeon, Columba livia f.d. Anatomy and Embryology, 169, 319–327.PubMedCrossRefGoogle Scholar
  57. Roesch, S., Mailly, P., Deniau, J. M., & Maurin, Y. (1996). Computer assisted three-dimensional reconstruction of brain regions from serial section digitized images. Application to the organization of striato-nigral relationships in the rat. Journal of Neuroscience Methods, 69, 197–204.PubMedCrossRefGoogle Scholar
  58. Roland, P. E., & Zilles, K. (1994). Brain atlases- a new research tool. TINS, 17, 458–467.PubMedGoogle Scholar
  59. Sarkisov, S. A., Filimonoff, I. N., & Preobrashenskaya, N. S. (1949). Cytoarchitecture of the human cortex cerebri (russ.). Moscow: Medgiz, 29, 7–308.Google Scholar
  60. Sauer, B. (1983a). Lamina boundaries of the human striata area compared with automatically obtained grey level index profiles. Journal fur Hirnforschung, 24, 79–87.PubMedGoogle Scholar
  61. Sauer, B. (1983b). Semi-automatic analysis of microscopic images of the human cerebral cortex using the grey level index. Journal of Microscopy, 129, 75–87.PubMedGoogle Scholar
  62. Schleicher, A., Amunts, K., Geyer, S., Kowalski, T., Schormann, T., Palomero-Gallagher, N., et al. (2000). A stereological approach to human cortical architecture: Identification and delineation of cortical areas. Journal of Chemical Neuroanatomy, 20, 31–47.PubMedCrossRefGoogle Scholar
  63. Schleicher, A., Amunts, K., Geyer, S., Morosan, P., & Zilles, K. (1999). Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics. NeuroImage, 9, 165–177.PubMedCrossRefGoogle Scholar
  64. Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S. B., Kowalski, T., de Vos, K., et al. (2005). Quantitative architectural analysis: A new approach to cortical mapping. Anatomy and Embryology, 210, 373–386.PubMedCrossRefGoogle Scholar
  65. Schleicher, A., & Zilles, K. (1990). A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser. Journal of Microscopy, 157, 367–381.PubMedGoogle Scholar
  66. Schleicher, A., & Zilles, K. (2005). The verticality index: A quantitative approach to the analysis of the columnar arrangement of neurons in the primate neocortex. In M. F. Casanova (Ed.), Neocortical modularity and the cell minicolumn (pp. 181–185). New York: Nova Science.Google Scholar
  67. Schleicher, A., Zilles, K., & Kretschmann, H. J. (1978). Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Verhandlungen der Anatomischen Gesellschaft, 72, 413–415.PubMedGoogle Scholar
  68. Schleicher, A., Zilles, K., & Wree, A. (1986). A quantitative approach to cytoarchitectonics: Software and hardware aspects of a system for the evaluation of structural inhomogeneities in nervous tissue. Journal of Neuroscience Methods, 18, 221–235.PubMedCrossRefGoogle Scholar
  69. Schmitt, O., & Böhme, M. (2002). A robust transcortical profile scanner for generating 2-d traverses in histological sections of richly curved cortical courses. NeuroImage, 16, 1103–1119.PubMedCrossRefGoogle Scholar
  70. Schmitt, O., Pakura, M., Aach, T., Hömke, L., Böhme, M., Bock, S., et al. (2004). Analysis of nerve fibers and their distribution in histologic sections of the human brain. Microscopy Research and Technique, 63, 220–243.PubMedCrossRefGoogle Scholar
  71. Sherwood, C. C., Holloway, R. L., Erwin, J. M., Schleicher, A., Zilles, K., & Hof, P. R. (2004). Cortical orofacial motor representation in Old World monkeys, great apes, and humans. I. Quantitative analysis of cytoarchitecture. Brain, behavior and evolution, 63, 61–81.PubMedCrossRefGoogle Scholar
  72. Süss, M., Washausen, S., Kuhn, H. J., & Knabe, W. (2002). High resolution scanning and three-dimensional reconstruction of cellular events in large objects during brain development. Journal of Neuroscience Methods, 113, 147–158.PubMedCrossRefGoogle Scholar
  73. Talairach, J., & Tournoux, P. (1988). Co-planar stereotactic atlas of the human brain. 3-dimensional proportional system: An approach to the cerebral imaging. Stuttgart: Thieme.Google Scholar
  74. Toga, A. W., Thompson, P. M., Mori, S., Amunts, K., & Zilles, K. (2006). Towards multimodal atlases of the human brain. Nature reviews. Neuroscience, 7, 952–966.PubMedCrossRefGoogle Scholar
  75. Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. G. Ingle, M. A. Goodale, & R. J. Q. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge MA: MIT.Google Scholar
  76. Vogeley, K., Tepest, R., Schneider-Axmann, T., Hütte, H., Zilles, K., Honer, W. G., et al. (2003). Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia. Schizophrenia Research, 62, 133–140.PubMedCrossRefGoogle Scholar
  77. von Economo, K., & Koskinas, G. (1925). Die Cytoarchitektonic der Hirnrinde des erwachsenen Menschen. Wien: Springer.Google Scholar
  78. Walters, B., Eickhoff, S. B., Schleicher, A., Zilles, K., Amunts, K., Egan, G. F., et al. (2007). Observer independent analysis of high-resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas. Human Brain Mapping, 28, 1–8.PubMedCrossRefGoogle Scholar
  79. Weibel, E. R. (1981). Stereological methods in cell biology: Where we are–where are we going? Journal of Histochemistry and Cytochemistry, 9, 1043–1052.Google Scholar
  80. Wilms, M., Eickhoff, S. B., Specht, K., Amunts, K., Shah, N. J., Malikovic, A., et al. (2005). Human V5/MT+: Comparison of functional and cytoarchitectonic data. Anatomy and Embryology, 210, 485–495.PubMedCrossRefGoogle Scholar
  81. Wree, A., Schleicher, A., & Zilles, K. (1982). Estimation of volume fractions in nervous tissue with an image analyzer. Journal of Neuroscience Methods, 6, 29–43.PubMedCrossRefGoogle Scholar
  82. Zilles, K., Armstrong, E., Moser, K. H., Schleicher, A., & Stephan, H. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34, 143–150.PubMedCrossRefGoogle Scholar
  83. Zilles, K., Palomero-Gallagher, N., Grefkes, C., Scheperjans, F., Boy, C., Amunts, K., et al. (2002a). Architectonics of the human cerebral cortex and transmitter receptor fingerprints: Reconciling functional neuroanatomy and neurochemistry. European Neuropsychopharmacology, 12, 587–599.PubMedCrossRefGoogle Scholar
  84. Zilles, K., Schleicher, A., & Kretschmann, H.-J. (1978). A quantitative approach to cytoarchitectonics: I. The areal pattern of the cortex of Tupaia belangeri. Anatomy and Embryology, 153, 195–212.PubMedCrossRefGoogle Scholar
  85. Zilles, K., Schleicher, A., Palomero-Gallagher, N., & Amunts, K. (2002b). Quantitative analysis of cyto- and receptor architecture of the human brain. In A. W. Toga & J. C. Maziotta (Eds.), Brain mapping: The methods (2nd ed., pp. 573–602). Amsterdam: Academic Press.Google Scholar
  86. Zilles, K., Stephan, H., & Schleicher, A. (1982). Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In E. Armstrong & D. Falk (Eds.), Primate brain evolution: Methods and concepts (pp. 177–201). New York: Plenum.Google Scholar
  87. Zilles, K., Zilles, B., & Schleicher, A. (1980). A quantitative approach to cytoarchitectonics VI. The areal pattern of the cortex of the albino rat. Anatomy and Embryology, 159, 335–360.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Axel Schleicher
    • 1
  • Patricia Morosan
    • 2
  • Katrin Amunts
    • 2
    • 3
    • 4
  • Karl Zilles
    • 1
    • 4
    • 5
  1. 1.C. and O. Vogt Institute of Brain ResearchDuesseldorf UniversityDüsseldorfGermany
  2. 2.Institute of Neuroscience and Medicine, INM-1Research Centre JuelichJuelichGermany
  3. 3.Department of Psychiatry and PsychotherapyRWTH Aachen UniversityAachenGermany
  4. 4.Juelich-Aachen Research Alliance (JARA)RWTH Aachen UniversityAachenGermany
  5. 5.Institute of Neuroscience and Medicine, INM-2Research Centre JuelichJuelichGermany

Personalised recommendations