Advertisement

Journal of Autism and Developmental Disorders

, Volume 39, Issue 10, pp 1449–1463 | Cite as

Sensory Impairments and Autism: A Re-Examination of Causal Modelling

  • Sue Gerrard
  • Gordon Rugg
Original Paper

Abstract

Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner’s causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a standardised framework for analysing autistic characteristics would facilitate the identification of sub-groups and the location of biological markers for genetic variation. We also support a neuroconstructivist model proposing that peripheral sensory abnormalities disrupt compilation of complex skills; impact on synaptogenesis, synaptic pruning and myelination; and subsequently manifest themselves as autistic behaviours. This model explains some of the structural and functional brain abnormalities and many of the perceptual, cognitive and attentional features found in autism.

Keywords

Sensory impairments Autism Kanner Biological marker Compiled skills 

Notes

Acknowledgments

The authors wish to express their gratitude to the anonymous reviewers of the original version of this paper for their helpful suggestions.

References

  1. Allen, C., & Bekoff, M. (1995). Cognitive ethology and the intentionality of animal behaviour. Mind & Language, 10, 313–328. doi: 10.1111/j.1468-0017.1995.tb00017.x.CrossRefGoogle Scholar
  2. Allen, G., & Courchesne, E. (2001). Attention function and dysfunction in autism. Frontiers in Bioscience, 6, d105–d119. doi: 10.2741/allen.PubMedCrossRefGoogle Scholar
  3. Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 39, 369–406. doi: 10.1037/0033-295X.89.4.369.CrossRefGoogle Scholar
  4. Anderson, G. M. (2008). The potential role for emergence in autism. Autism Research, 1, 18–30. doi: 10.1002/aur.2.PubMedCrossRefGoogle Scholar
  5. Anderson, B. J., Li, X., Alcántara, A. A., Isaacs, K. R., Black, J. E., & Greenough, W. T. (1994). Glial hypertrophy is associated with synaptogenesis following motor-skill learning, but not with angiogenesis following exercise. Glia, 11, 73–80. doi: 10.1002/glia.440110110.PubMedCrossRefGoogle Scholar
  6. APA. (1994). Diagnostic and statistical manual of mental disorders (4th edn.). DSM-IV. Washington, DC: American Psychiatric Association.Google Scholar
  7. Ashwin, E., Ashwin, C., Rhydderch, D., Howells, J., & Baron-Cohen, S. (2009). Eagle-eyed visual acuity: An experimental investigation of enhanced perception in autism. Biological Psychiatry, 65, 17–21.PubMedCrossRefGoogle Scholar
  8. Asperger, H. (1944). ‘Autistic psychopathy’ in childhood (tr. U. Frith). In U. Frith (Ed.), Autism and Asperger syndrome. Cambridge: Cambridge University Press.Google Scholar
  9. Baguley, D. M. (2003). Hyperacusis. Journal of the Royal Society of Medicine, 96, 582–585. doi: 10.1258/jrsm.96.12.582.PubMedCrossRefGoogle Scholar
  10. Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., et al. (1998). A clinicopathological study of autism. Brain, 121, 889–905. doi: 10.1093/brain/121.5.889.PubMedCrossRefGoogle Scholar
  11. Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Sciences, 6, 248–254. doi: 10.1016/S1364-6613(02)01904-6.PubMedCrossRefGoogle Scholar
  12. Baron-Cohen, S., & Bolton, P. (1993). Autism: The facts. Oxford: Oxford University Press.Google Scholar
  13. Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. R. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral Reviews, 24, 355–364. doi: 10.1016/S0149-7634(00)00011-7.PubMedCrossRefGoogle Scholar
  14. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 42, 241–251. doi: 10.1111/1469-7610.00715.PubMedCrossRefGoogle Scholar
  15. Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R., Greenough, W. T., Beckel-Mitchener, A., et al. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9, 646–663.PubMedGoogle Scholar
  16. Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, H. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 1148–1150. doi: 10.1038/nn1516.PubMedCrossRefGoogle Scholar
  17. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128, 2430–2441. doi: 10.1093/brain/awh561.PubMedCrossRefGoogle Scholar
  18. Bird, G., Catmur, C., Silania, G., Frith, C., & Frith, U. (2006). Attention does not modulate neural responses to social stimuli in autism spectrum disorders. NeuroImage, 31, 1614–1624. doi: 10.1016/j.neuroimage.2006.02.037.PubMedCrossRefGoogle Scholar
  19. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572. doi: 10.1073/pnas.87.14.5568.PubMedCrossRefGoogle Scholar
  20. Blakemore, S.-J., Tavassoli, T., Calò, S., Thomas, R. M., Catmur, C., Frith, U., et al. (2006). Tactile sensitivity in Asperger syndrome. Brain and Cognition, 61, 5–13. doi: 10.1016/j.bandc.2005.12.013.PubMedCrossRefGoogle Scholar
  21. Bogdashina, O. (2003). Sensory perceptual issues in autism and Asperger syndrome. London & Philadelphia: Jessica Kingsley Publishers.Google Scholar
  22. Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A.-M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15, 226–235. doi: 10.1162/089892903321208169.PubMedCrossRefGoogle Scholar
  23. Bradley, A., Applegate, R. A., Zeffren, B. S., & van Heuven, W. A. (1992). Psychophysical measurement of the size and shape of the human foveal avascular zone. Ophthalmic & Physiological Optics, 12, 18–23.CrossRefGoogle Scholar
  24. Brenner, L. A., Turner, K. C., & Müller, R.-A. (2007). Eye movement and visual search: Are there elementary abnormalities in autism? Journal of Autism and Developmental Disorders, 37, 1289–1309. doi: 10.1007/s10803-006-0277-9.PubMedCrossRefGoogle Scholar
  25. Bresciani, J.-P., Ernst, M. O., Drewing, K., Bouyer, G., Maury, V., & Kheddar, A. (2005). Feeling what you hear: Auditory signals can modulate tactile tap perception. Experimental Brain Research, 162, 172–180. doi: 10.1007/s00221-004-2128-2.CrossRefGoogle Scholar
  26. Brownell, H., Griffin, R., Winner, E., Friedman, O., & Happé, F. (2000). Cerebral lateralization and theory of mind. In S. Baron-Cohen, H. Tager-Flusberg, & D. J. Cohen (Eds.), Understanding other minds (2nd ed.). Oxford: Oxford University Press.Google Scholar
  27. Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence of an inefficient attentional lens. Journal of Abnormal Psychology, 103, 535–543. doi: 10.1037/0021-843X.103.3.535.PubMedCrossRefGoogle Scholar
  28. Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage, 16, 1038–1051. doi: 10.1006/nimg.2002.1099.PubMedCrossRefGoogle Scholar
  29. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  30. Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K. A., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38, 127–137. doi: 10.1007/s10803-007-0370-8.PubMedCrossRefGoogle Scholar
  31. Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 1839–1849. doi: 10.1093/brain/awf189.PubMedCrossRefGoogle Scholar
  32. Clancy, B., & Finlay, B. (2001). Neural correlates of early language learning. In M. Tomasello & E. Bates (Eds.), Language development: The essential readings. Oxford: WileyBlackwell.Google Scholar
  33. Cohen, I. L. (2007). A neural network model of autism: Implications for theory and treatment. In D. Mareschal, S. Sirois, G. Westermann, & M. Johnson (Eds.), Neuroconstructivism: Perspectives and prospects (Vol. 2). Oxford: Oxford University Press.Google Scholar
  34. Comi, A. M., Zimmerman, A. W., Frye, V. H., Law, P. A., & Peeden, J. N. (1999). Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. Journal of Child Neurology, 14, 388–394. doi: 10.1177/088307389901400608.PubMedCrossRefGoogle Scholar
  35. Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60, 524–530. doi: 10.1001/archpsyc.60.5.524.PubMedCrossRefGoogle Scholar
  36. Cook, E. H. (1998). Genetics of autism. Mental Retardation and Developmental Disabilities Research Reviews, 4, 113–120. doi: 10.1002/(SICI)1098-2779(1998)4:2<113::AID-MRDD8>3.0.CO;2-Q.CrossRefGoogle Scholar
  37. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi: 10.1001/jama.290.3.337.PubMedCrossRefGoogle Scholar
  38. Courchesne, E., Townsend, J., & Saitoh, O. (1994). The brain in infantile autism: Posterior fossa structures are abnormal. Neurology, 44, 214.PubMedGoogle Scholar
  39. Dacey, D. (2004). Origins of perception: Retinal ganglion cell diversity and the creation of parallel visual pathways. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  40. Davinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118, 279–306. doi: 10.1093/brain/118.1.279.CrossRefGoogle Scholar
  41. Denis, D., Burillon, C., Livet, M. O., & Burguière, O. (1997). Ophthalmologic signs in children with autism. Journal Francais d’Ophtalmologie, 20, 103–110.PubMedGoogle Scholar
  42. Dyck, J. P., Mellinger, J. F., Reagan, T. J., Horowitz, S. J., Mcdonald, J. W., Litchy, W. J., et al. (1983). Not ‘indifference to pain’ but varieties of hereditary sensory and autonomic neuropathy. Brain, 106, 373–390. doi: 10.1093/brain/106.2.373.PubMedCrossRefGoogle Scholar
  43. Emery, N. J., & Perrett, D. I. (2000). Studies of the monkey brain. In S. Baron-Cohen, H. Tager-Flusberg, & D. J. Cohen (Eds.), Understanding other minds (2nd ed.). Oxford: Oxford University Press.Google Scholar
  44. Eshkol, N., & Wachman, A. (1958). Movement notation. London: Weidenfeld & Nicolson.Google Scholar
  45. Fields, R. D. (2005). Myelination: An overlooked mechanism of synaptic plasticity? The Neuroscientist, 11, 528–531. doi: 10.1177/1073858405282304.PubMedCrossRefGoogle Scholar
  46. Freiwald, W., & Kanwisher, N. G. (2004). Visual selective attention: Insights from brain imaging and neurophysiology. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  47. Frith, C., & Frith, U. (2000). The physiological basis of theory of mind: Functional neuroimaging studies. In S. Baron-Cohen, H. Tager-Flusberg, & D. J. Cohen (Eds.), Understanding other minds (2nd ed.). Oxford: Oxford University Press.Google Scholar
  48. Frith, U., & Happé, F. (1995). Autism: Beyond “theory of mind”. In J. Mehler & S. Franck (Eds.), Cognition on cognition. Cambridge: MIT Press.Google Scholar
  49. Gan, W.-B., Zuo, Y., Yang, G., & Kwon, E. (2005). Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature, 436, 264–265.Google Scholar
  50. Ganis, G., Thompson, W. L., Mast, F., & Kosslyn, S. M. (2004). The brain’s mind’s images: The cognitive neuroscience of mental imagery. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  51. Gardner, H. (1977). The shattered mind. London, Henley: Routledge & Kegan Paul.Google Scholar
  52. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573. doi: 10.1038/9224.PubMedCrossRefGoogle Scholar
  53. Gillberg, I. C., Gillberg, C., & Kopp, S. J. (1992). Hypothyroidism and autism spectrum disorders. Child Psychology and Psychiatry, 33, 531–542. doi: 10.1111/j.1469-7610.1992.tb00889.x.CrossRefGoogle Scholar
  54. Glaser, R. (1989). Expertise and learning: How do we think about instructional processes now that we have discovered knowledge structures? In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  55. Golani, I. (1976). Homeostatic motor processes in mammalian interactions, a choreography of display. In P. P. G. Bateson & P. H. Klopfer (Eds.), Perspectives in ethology (Vol. 2). New York: Plenum Press.Google Scholar
  56. Gordon, A. G. (1986). Abnormal middle ear muscle reflexes and audiosensitivity. British Journal of Audiology, 20, 95–99. doi: 10.3109/03005368609079002.PubMedCrossRefGoogle Scholar
  57. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry, 160, 636–645. doi: 10.1176/appi.ajp.160.4.636.PubMedCrossRefGoogle Scholar
  58. Gould, T. D., & Gottesman, I. I. (2005). Psychiatric endophenotypes and the development of valid animal models. Genes Brain & Behavior, 5, 113–119. doi: 10.1111/j.1601-183X.2005.00186.x.Google Scholar
  59. Goulis, D. G., Tsimpiris, N., Delaroudis, S., Maltas, B., Tzoiti, M., Dagilas, A., et al. (1998). Stapedial reflex: A biological index found to be abnormal in clinical and subclinical hypothyroidism. Thyroid, 8, 583–587. doi: 10.1089/thy.1998.8.583.PubMedCrossRefGoogle Scholar
  60. Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817–832. doi: 10.1111/1467-8624.00059.PubMedCrossRefGoogle Scholar
  61. Hackett, T. A., & Kaas, J. H. (2004). Auditory cortex in primates: Functional subdivisions and processing streams. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  62. Happé, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9, 1218–1220. doi: 10.1038/nn1770.PubMedCrossRefGoogle Scholar
  63. Haxby, J. V., Gobbini, M. I., & Montgomery, K. (2004). Spatial and temporal distribution of face and object representations in the human brain. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  64. Hendrickson, A. E. (1994). Primate foveal development: A microcosm of current questions in neurobiology. Investigative Ophthalmology & Visual Science, 35, 3129–3133.Google Scholar
  65. Henkin, R. I., & Levy, L. M. (2002). Functional MRI of congenital hyposmia: Brain activation to odors and imagination of odors and tastes. Journal of Computer Assisted Tomography, 26, 39–61. doi: 10.1097/00004728-200201000-00008.PubMedCrossRefGoogle Scholar
  66. Herbert, M. R., Russo, J. P., Yang, S., Roohi, J., Blaxille, M., Kahler, S. G., et al. (2006). Autism and environmental genomics. Neurotoxicology, 27, 671–684. doi: 10.1016/j.neuro.2006.03.017.PubMedCrossRefGoogle Scholar
  67. Heyes, C., & Dickinson, A. (1995). Folk psychology won’t go away: Response to Allen and Bekoff. Mind & Language, 10, 329–332. doi: 10.1111/j.1468-0017.1995.tb00018.x.CrossRefGoogle Scholar
  68. Hobson, R. P., & Bishop, M. (2003). The pathogenesis of autism: Insights from congenital blindness. In U. Frith & E. Hill (Eds.), Autism: Brain and mind. Oxford: Oxford University Press.Google Scholar
  69. Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Research, 16, 195–205.Google Scholar
  70. Jackler, R. K., Luxford, W. M., & House, W. F. (1987). Congenital malformations of the inner ear: A classification based on embryogenesis. Laryngoscope, 97(1), 2–14.PubMedGoogle Scholar
  71. Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger Syndrome faster than normal on the embedded figures test? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 38, 527–534. doi: 10.1111/j.1469-7610.1997.tb01539.x.PubMedCrossRefGoogle Scholar
  72. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.Google Scholar
  73. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  74. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302–4311.PubMedGoogle Scholar
  75. Kayser, C., Petkov, C. I., & Logothetis, N. K. (2008). Visual modulation of neurons in auditory cortex. Cerebral Cortex (New York, N.Y.), 18, 1560–1574. doi: 10.1093/cercor/bhm187.CrossRefGoogle Scholar
  76. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & van Engeland, H. J. (1998). Abnormal saccadic eye movements in autistic children. Journal of Autism and Developmental Disorders, 28, 61–67. doi: 10.1023/A:1026015120128.PubMedCrossRefGoogle Scholar
  77. Kemper, T. L., & Bauman, M. L. (1993). The contribution of neuropathologic studies to the understanding of autism. Neurologic Clinics, 11, 75–87.Google Scholar
  78. Kientz, M. A., & Dunn, W. (1997). A comparison of the performance of children with and without autism on the sensory profile. The American Journal of Occupational Therapy, 51, 530–537.PubMedGoogle Scholar
  79. Klin, A. (1993). Auditory brainstem responses in autism: Brainstem dysfunction or peripheral hearing loss? Journal of Autism and Developmental Disorders, 23, 15–35. doi: 10.1007/BF01066416.PubMedCrossRefGoogle Scholar
  80. Kollias, S. S. (2004). Imaging for the congenitally malformed temporal bone. In M. Lemmerling & S. S. Kollias (Eds.), Radiology of the petrous bone. New York: Springer.Google Scholar
  81. Kranowitz, C. S. (1998). The out-of-sync child. New York: The Berkeley Publishing Group.Google Scholar
  82. Lehner, P. N. (1987). Design and execution of animal behavior research: An overview. Journal of Animal Science, 65, 1213–1219.PubMedGoogle Scholar
  83. Lendvai, B., Stern, A., Chen, B., & Svoboda, K. (2000). Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature, 404, 876–881. doi: 10.1038/35009107.PubMedCrossRefGoogle Scholar
  84. Leslie, A. M. (1987). Pretense and representation: The origins of ‘theory of mind’. Psychological Review, 94, 4124–4126. doi: 10.1037/0033-295X.94.4.412.CrossRefGoogle Scholar
  85. Levitin, D. J., Cole, K., Lincoln, A., & Bellugi, U. (2004). Aversion, awareness, and attraction: Investigating claims of hyperacusis in the Williams syndrome phenotype. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45, 1–10. doi: 10.1046/j.0021-9630.2003.045_1.x.CrossRefGoogle Scholar
  86. Liu, J. C., & Shiffman, R. N. (1997). Operationalization of clinical practice guidelines using fuzzy logic. Proceedings of the American Medical Informatics Association Annual Fall Symposium, 28, 3–287.Google Scholar
  87. Lord, C. (1995). Follow-up of two-year-olds referred for possible autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 36, 1365–1382. doi: 10.1111/j.1469-7610.1995.tb01669.x.PubMedCrossRefGoogle Scholar
  88. Lorig, T. S. (2000). The application of electroencephalographic techniques to the study of human olfaction: A review and tutorial. International Journal of Psychophysiology, 36, 91–104. doi: 10.1016/S0167-8760(99)00104-X.PubMedCrossRefGoogle Scholar
  89. Manning, A., & Dawkins, M. S. (1998). An introduction to animal behaviour (5th ed.). Cambridge: Cambridge University Press.Google Scholar
  90. Mareschal, D., Johnson, M., Sirois, S., Spratling, M., Thomas, M., & Westermann, G. (2007). Neuroconstructivism: How the brain constructs cognition (Vol. 1). Oxford: Oxford University Press.Google Scholar
  91. Markram, H., Rinaldi, T., & Markram, K. (2007). The intense world syndrome–an alternative hypothesis for autism. Frontiers in Neuroscience, 1, 77–96. doi: 10.3389/neuro.01.1.1.006.2007.PubMedCrossRefGoogle Scholar
  92. Martin, P., & Bateson, P. (1993). Measuring behaviour: An introductory guide (2nd ed.). Cambridge, UK: Cambridge University Press.Google Scholar
  93. McClay, J. E., Tandy, R., Grundfast, K., Choi, S., Vezina, G., Zalzal, G., et al. (2002). Major and minor temporal bone abnormalities in children with and without congenital sensorineural hearing loss. Archives of Otolaryngology–Head & Neck Surgery, 128, 664–671.Google Scholar
  94. McGurk, H., & McDonald, J. W. (1976). Hearing lips and seeing voices. Nature, 264, 746–748. doi: 10.1038/264746a0.PubMedCrossRefGoogle Scholar
  95. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 43, 255–263. doi: 10.1111/1469-7610.00018.PubMedCrossRefGoogle Scholar
  96. Mimura, K., Kimoto, T., & Okada, M. (2003). Synapse efficiency diverges due to synaptic pruning following overgrowth. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 68, 031910.Google Scholar
  97. Mintz-Hittner, H. A., Knight-Nanan, D. M., Satriano, D. R., & Kretzer, F. L. (1999). A small foveal avascular zone may be an historic mark of prematurity. Ophthalmology, 106, 1409–1413. doi: 10.1016/S0161-6420(99)00732-0.PubMedCrossRefGoogle Scholar
  98. Mottron, L., & Burack, J. A. (2001). Enhanced perceptual processing. In J. A. Burack, T. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), The development of autism: Perspectives from theory and research. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  99. Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43. doi: 10.1007/s10803-005-0040-7.PubMedCrossRefGoogle Scholar
  100. Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pinedad, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Research. Cognitive Brain Research, 24, 190–198. doi: 10.1016/j.cogbrainres.2005.01.014.PubMedCrossRefGoogle Scholar
  101. Ornitz, E. M., Atwell, C. W., Kaplan, A. R., & Westlake, J. R. (1985). Brain-stem dysfunction in autism. Results of vestibular stimulation. Archives of General Psychiatry, 42, 1018–1025.PubMedGoogle Scholar
  102. Ornitz, E. M., Brown, M. B., Mason, A., & Putnam, N. H. (1974). Effect of visual input on vestibular nystagmus in autistic children. Archives of General Psychiatry, 31, 369–375.PubMedGoogle Scholar
  103. Ornitz, E. M., & Ritvo, E. R. (1968). Perceptual inconstancy in early infantile autism. Archives of General Psychiatry, 18, 76–97.PubMedGoogle Scholar
  104. Ostrowski, V. B., Byskosh, A., & Hain, T. C. (2001). Tullio phenomenon with dehiscence of the superior semicircular canal. Vestibular problems. Otology & Neurotology, 22, 61–65. doi: 10.1097/00129492-200101000-00012.CrossRefGoogle Scholar
  105. Perry, W., Minassian, A., Lopez, B., Maron, L., & Lincoln, A. (2007). Sensorimotor gating deficits in adults with autism. Biological Psychiatry, 61, 482–486. doi: 10.1016/j.biopsych.2005.09.025.PubMedCrossRefGoogle Scholar
  106. Pessoa, L., & Ungerleider, L. G. (2004). Top-down mechanisms for working memory and attentional processes. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  107. Pierce, K., Müller, R.-A., Ambrose, J., & Allen, G. (2001). Face processing occurs outside the fusiform ‘face area’ in autism: Evidence from functional MRI. Brain, 124, 2059–2073. doi: 10.1093/brain/124.10.2059.PubMedCrossRefGoogle Scholar
  108. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 39, 765–775. doi: 10.1017/S0021963098002601.PubMedCrossRefGoogle Scholar
  109. Plaisted, K., Saksida, L., Alcántara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 375–386. doi: 10.1098/rstb.2002.1211.PubMedCrossRefGoogle Scholar
  110. Rakic, P., Ang, E. S. B. C., & Breunig, J. (2004). Setting the stage for cognition: Genesis of the primate cerebral cortex. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  111. Rimland, B. (1964). Infantile autism. New York: Appleton-Century-Crofts.Google Scholar
  112. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2001). A deficit in shifting attention present in high-functioning autism but not Asperger’s disorder. Autism, 5, 67–80. doi: 10.1177/1362361301005001007.PubMedCrossRefGoogle Scholar
  113. Ristic, J., Mottron, L., Friesen, C. K., Iarocci, G., Burack, J. A., & Kingstone, A. (2005). Eyes are special but not for everyone: The case of autism. Brain Research. Cognitive Brain Research, 24, 715–718. doi: 10.1016/j.cogbrainres.2005.02.007.PubMedCrossRefGoogle Scholar
  114. Rogers, S., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 46, 1255–1268. doi: 10.1111/j.1469-7610.2005.01431.x.PubMedCrossRefGoogle Scholar
  115. Rolls, E. T., Everitt, B. J., & Roberts, A. (1996). The orbitofrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 1433–1444. doi: 10.1098/rstb.1996.0128.PubMedCrossRefGoogle Scholar
  116. Ronald, A., Happé, F., Bolton, P., Butcher, L. M., Price, T. S., Wheelwright, S., et al. (2006). Genetic heterogeneity between the three components of the autism spectrum: A twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 691–699. doi: 10.1097/01.chi.0000215325.13058.9d.PubMedCrossRefGoogle Scholar
  117. Roper, L. (2003). Co-occurrence of autism and deafness: Diagnostic considerations. Autism, 7, 245–253. doi: 10.1177/13623613030073002.PubMedCrossRefGoogle Scholar
  118. Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. NJ, Erlbaum: Hillsdale.Google Scholar
  119. Rugg, G., & McGeorge, P. (1995). Laddering. Expert Systems: International Journal of Knowledge Engineering and Neural Networks, 12, 339–346. doi: 10.1111/j.1468-0394.1995.tb00271.x.Google Scholar
  120. Sabbagh, M. A. (2004). Understanding orbitofrontal contributions to theory-of-mind reasoning: Implications for autism. Brain and Cognition, 55, 209–219. doi: 10.1016/j.bandc.2003.04.002.PubMedCrossRefGoogle Scholar
  121. Saitoh, O., Courchesne, E., Egaas, B., Lincoln, A. J., & Schreibman, L. (1995). Cross- sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology, 45, 317–324.PubMedGoogle Scholar
  122. Schopler, E. (1965). Early infantile autism and receptor processes. Archives of General Psychiatry, 13, 327–337.PubMedGoogle Scholar
  123. Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 24, 613–620. doi: 10.1111/j.1469-7610.1983.tb00137.x.PubMedCrossRefGoogle Scholar
  124. Sirevaag, A. M., & Greenough, W. T. (1987). Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Research, 424, 320–332. doi: 10.1016/0006-8993(87)91477-6.PubMedCrossRefGoogle Scholar
  125. Slocombe, K. E., & Zuberbühler, K. (2005a). Functionally referential communication in a chimpanzee. Current Biology, 15, 1779–1784. doi: 10.1016/j.cub.2005.08.068.PubMedCrossRefGoogle Scholar
  126. Slocombe, K. E., & Zuberbühler, K. (2005b). Food-associated calls in chimpanzees: Responses to food types or food preferences? Animal Behaviour, 72, 989–999. doi: 10.1016/j.anbehav.2006.01.030.CrossRefGoogle Scholar
  127. Spiker, D., Lotspeich, L. J., Dimiceli, S., Myers, R. M., & Risch, N. (2002). Behavioral phenotypic variation in autism multiplex families: Evidence for a continuous severity gradient. American Journal of Medical Genetics, 114, 129–136. doi: 10.1002/ajmg.10188.PubMedCrossRefGoogle Scholar
  128. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425. doi: 10.1016/j.tics.2004.07.008.PubMedCrossRefGoogle Scholar
  129. Stayte, M., Reeves, B., & Wortham, C. (1993). Ocular and vision defects in preschool children. The British Journal of Ophthalmology, 77, 228–232. doi: 10.1136/bjo.77.4.228.PubMedCrossRefGoogle Scholar
  130. Stone, V. (2000). The role of the frontal lobes and amygdala in theory of mind. In S. Baron-Cohen, H. Tager-Flusberg, & D. J. Cohen (Eds.), Understanding other minds (2nd ed.). Oxford: Oxford University Press.Google Scholar
  131. Tanguay, P. E., & Edwards, R. M. (1982). Electrophysiological studies of autism: The whisper of the bang. Journal of Autism and Developmental Disorders, 12, 177–184. doi: 10.1007/BF01531307.PubMedCrossRefGoogle Scholar
  132. Tanguay, P. E., Edwards, R. M., Buchwald, J., Schwafel, J., & Allen, V. (1982). Auditory brainstem evoked responses in autistic children. Archives of General Psychiatry, 39, 174–180.PubMedGoogle Scholar
  133. Teitelbaum, O., Benton, T., Shah, P. K., Prince, A., Kelly, J. L., & Teitelbaum, P. (2004). Eshkol-Wachman movement notation in diagnosis: The early detection of Asperger’s syndrome. Proceedings of the National Academy of Sciences of the United States of America, 101, 11909–11914. doi: 10.1073/pnas.0403919101.PubMedCrossRefGoogle Scholar
  134. The Autism Genome Project Consortium. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328. doi: 10.1038/ng1985.CrossRefGoogle Scholar
  135. Thomas, M., & Karmiloff-Smith, A. (2002). Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. The Behavioral and Brain Sciences, 25, 727–750.PubMedGoogle Scholar
  136. Townsend, J., & Courchesne, E. (1994). Parietal damage and narrow “spotlight” spatial attention. Journal of Cognitive Neuroscience, 6, 220–232. doi: 10.1162/jocn.1994.6.3.220.CrossRefGoogle Scholar
  137. Turner, A. M., & Greenough, W. T. (1985). Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Research, 11, 195–203. doi: 10.1016/0006-8993(85)90525-6.CrossRefGoogle Scholar
  138. Volkmar, F. R., & Cohen, D. J. (1991). Comorbid association of autism and schizophrenia. The American Journal of Psychiatry, 148, 1705–1707.PubMedGoogle Scholar
  139. Wagner, A. D., Bunge, S. A., & Badre, D. (2004). Cognitive control, semantic memory and priming: Contributions from prefontal cortex. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  140. Waterhouse, L., Fein, D., & Modahl, C. (1996). Neurofunctional mechanisms in autism. Psychological Review, 103, 457–489. doi: 10.1037/0033-295X.103.3.457.PubMedCrossRefGoogle Scholar
  141. Westheimer, G., & Hauske, G. (1975). Temporal and spatial interference with vernier acuity. Vision Research, 15, 1137–1141. doi: 10.1016/0042-6989(75)90012-7.PubMedCrossRefGoogle Scholar
  142. WHO. (1992). International classification of diseases. (10th edn.). (ICD-10). Geneva: World Health Organization.Google Scholar
  143. Williams, D. (1992). Nobody nowhere. New York: Times Books.Google Scholar
  144. Williams, D. (1994). Somebody somewhere. New York: Three Rivers Press.Google Scholar
  145. Wing, L. (1969). The handicaps of autistic children—a comparative study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 10, 1–40. doi: 10.1111/j.1469-7610.1969.tb02066.x.PubMedCrossRefGoogle Scholar
  146. Wing, L., & Gould, J. (1979). Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification. Journal of Autism and Childhood Schizophrenia, 9, 11–29. doi: 10.1007/BF01531288.CrossRefGoogle Scholar
  147. Yousem, D. M., Geckle, R. J., Bilker, W., McKeown, D. A., & Doty, R. L. (1996). MR evaluation of patients with congenital hyposmia or anosmia. AJR. American Journal of Roentgenology, 166, 439–443.PubMedGoogle Scholar
  148. Zadeh, L. A. (1996). A note on prototype theory and fuzzy sets. In G. J. Klir & B. Yuan (Eds.), Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lofti A. Zadeh. River Edge, NJ: World Scientific Publishing.Google Scholar
  149. Zeffren, B. S., Applegate, R. A., Bradley, A., & van Heuven, W. A. (1990). Retinal fixation point location in the foveal avascular zone. Investigative Ophthalmology & Visual Science, 31, 2099–2105.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Knowledge Modelling Group, School of Computing and MathematicsKeele UniversityKeele, StaffordshireUK

Personalised recommendations