Journal of Autism and Developmental Disorders

, Volume 39, Issue 11, pp 1499–1508 | Cite as

Abnormal Transient Pupillary Light Reflex in Individuals with Autism Spectrum Disorders

  • Xiaofei Fan
  • Judith H. Miles
  • Nicole Takahashi
  • Gang YaoEmail author
Original Paper


Computerized binocular infrared pupillography was used to measure the transient pupillary light reflex (PLR) in both children with autism spectrum disorders (ASDs) and children with typical development. We found that participants with ASDs showed significantly longer PLR latency, smaller constriction amplitude and lower constriction velocity than children with typical development. The PLR latency alone can be used to discriminate the ASD group from the control group with a cross-validated success rate of 89.6%. By adding the constriction amplitude, the percentage of correct classification can be further improved to 92.5%. In addition, the right-lateralization of contraction anisocoria that was observed in participants with typical development was not observed in those with ASDs. Further studies are necessary to understand the origin and implications of these observations. It is anticipated that as potential biomarkers, these pupillary light reflex measurements will advance our understanding of neurodevelopmental differences in the autism brain.


Autism Pupillary light reflex Biomarker 



This research was partially supported by a research grant from the Wallace H. Coulter Foundation. The authors thank Dr. Bo Lei for his help with vision exams in a portion of the participants.


  1. Alexandridis, E., Argyropoulos, T., & Krastel, H. (1981). The latent period of the pupil light reflex in lesions of the optic nerve. Ophthalmologica, 182, 211–217.PubMedCrossRefGoogle Scholar
  2. Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. The American Journal of Psychiatry, 160, 262–273. doi: 10.1176/appi.ajp.160.2.262.PubMedCrossRefGoogle Scholar
  3. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145. doi: 10.1016/j.tins.2007.12.005.PubMedCrossRefGoogle Scholar
  4. Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51, 207–211. doi: 10.1002/dev.20352.PubMedCrossRefGoogle Scholar
  5. Anderson, C. J., Colombo, J., & Shaddy, D. J. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder. Journal of Clinical and Experimental Neuropsychology, 28, 1238–1256. doi: 10.1080/13803390500376790.PubMedCrossRefGoogle Scholar
  6. Barbur, J. L. (2003). Learning from the pupil: studies of basic mechanisms and clinical application. In L. M. Chalupa & J. S. Werner (Eds.), The Visual Neurosciences (pp. 641–656). Cambridge, MA: MIT Press.Google Scholar
  7. Barkovich, A. J. (2000). Concepts of myelin and myelination in neuroradiology. AJNR. American Journal of Neuroradiology, 21, 1099–1109.PubMedGoogle Scholar
  8. Bax, M., Tydeman, C., & Flodmark, O. (2006). Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. Journal of the American Medical Association, 296, 1602–1608. doi: 10.1001/jama.296.13.1602.PubMedCrossRefGoogle Scholar
  9. Bergamin, O., & Kardon, R. H. (2003). Latency of the pupil light reflex: Sample rate, stimulus intensity, and variation in normal subject. Investigative Ophthalmology & Visual Science, 44, 1546–1554. doi: 10.1167/iovs.02-0468.CrossRefGoogle Scholar
  10. Boddaert, N., Zilbovicius, M., Philipe, A., Robel, L., Bourgeois, M., Barthélemy, C., et al. (2009). MRI findings in 77 children with non-syndromic autistic disorder. PLoS ONE, 4, e4415. doi: 10.1371/journal.pone.0004415.PubMedCrossRefGoogle Scholar
  11. Bos, J. E. (1991). Detection of the pupil constriction latency. Medical & Biological Engineering & Computing, 29, 529–534. doi: 10.1007/BF02442326.CrossRefGoogle Scholar
  12. Camelo-Nunes, I. C. (2006). New antihistamines: A critical view. Jornal de Pediatria, 82, S173–S180. doi: 10.2223/JPED.1552.PubMedCrossRefGoogle Scholar
  13. Cantú, T. G., & Korek, J. S. (1991). Central nervous system reactions to histamine-2 receptor blockers. Annals of Internal Medicine, 114, 1027–1034.PubMedGoogle Scholar
  14. Casanova, M. F. (2007). The neuropathology of autism. Brain Pathology (Zurich, Switzerland), 17, 422–433. doi: 10.1111/j.1750-3639.2007.00100.x.Google Scholar
  15. Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. NeuroImage, 41, 1184–1191. doi: 10.1016/j.neuroimage.2008.03.041.PubMedCrossRefGoogle Scholar
  16. Cleavinger, H. B., Bigler, E. D., Johnson, J. L., Lu, J., McMahon, W., & Lainhart, J. E. (2008). Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism. Journal of the International Neuropsychological Society, 14, 401–413. doi: 10.1017/S1355617708080594.PubMedCrossRefGoogle Scholar
  17. Cohen, D., Chambers, W., & Sprague, J. M. (1973). Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. The Journal of Comparative Neurology, 109, 233–259. doi: 10.1002/cne.901090207.CrossRefGoogle Scholar
  18. Cox, T. A., & Drewes, C. P. (1984). Contraction anisocoria resulting from half-field illumination. American Journal of Ophthalmology, 97, 577–582.PubMedGoogle Scholar
  19. Crispino, L., & Bullock, T. H. (1984). Cerebellum mediate modality-specific modulation of sensory response of midbrain and forebrain in rat. Proceedings of the National Academy of Sciences of the United States of America, 81, 2917–2920. doi: 10.1073/pnas.81.9.2917.PubMedCrossRefGoogle Scholar
  20. Fan, X. F., Miles, J. H., Takahashi, N., & Yao, G. (2009). Sex-specific lateralization of constriction anisocoria in transient pupillary light reflex. Investigative Ophthalmology & Visual Science, 50, 1137–1144. doi: 10.1167/iovs.08-2329.CrossRefGoogle Scholar
  21. Gamlin, P. D., & Clarke, R. J. (1995). The pupillary light reflex pathway of the primate. Journal of the American Optometric Association, 66, 415–418.PubMedGoogle Scholar
  22. Hultborn, H., Mori, K., & Tsukahara, N. (1978). Cerebellar influence on parasympathetic neurons innervating intra-ocular muscle. Brain Research, 159, 269–278. doi: 10.1016/0006-8993(78)90534-6.PubMedCrossRefGoogle Scholar
  23. Ijichi, Y., Kiyohara, T., Hosoba, M., & Tsukahara, N. (1977). The cerebella control of pupillary light reflex in the cat. Brain Research, 128, 69–79. doi: 10.1016/0006-8993(77)90236-0.PubMedCrossRefGoogle Scholar
  24. Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167. doi: 10.1037/h0026952.PubMedCrossRefGoogle Scholar
  25. Kern, J. K. (2002). The possible role of the cerebellum in autism/PDD: Disruption of a multisensory feedback loop. Medical Hypotheses, 59, 255–260. doi: 10.1016/S0306-9877(02)00212-8.PubMedCrossRefGoogle Scholar
  26. Kupfer, C., Chumbley, L., & Downer, J. C. (1967). Quantitative histology of optic nerve, optic tract and lateral geniculate nucleus of man. Journal of Anatomy, 101, 393–401.PubMedGoogle Scholar
  27. Loewenfeld, I. E. (1999). The pupil. Anatomy, physiology and clinical applications. Oxford: Butterworth-Heinemann.Google Scholar
  28. Lord, C., Rutter, M., & Couteur, A. L. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685. doi: 10.1007/BF02172145.PubMedCrossRefGoogle Scholar
  29. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule–generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223. doi: 10.1023/A:1005592401947.PubMedCrossRefGoogle Scholar
  30. Lowenstein, O., & Loewenfeld, I. E. (1950). Mutual role of sympathetic and parasympathetic in shaping of the pupillary reflex to light: Pupillographic studies. Archives of Neurology and Psychiatry, 64, 341–377.PubMedGoogle Scholar
  31. Miles, J. H., Takahashi, T. N., Bagby, S., Sahota, P. K., Vaslow, D. F., Wang, C. H., et al. (2005). Essential versus complex autism: Definition of fundamental prognostic subtypes. American Journal of Medical Genetics. Part A, 135, 171–180. doi: 10.1002/ajmg.a.30590.PubMedCrossRefGoogle Scholar
  32. Ming, X., Julu, P. O. O., Brimacombe, M., Connor, S., & Daniels, M. L. (2005). Reduced cardiac parasympathetic activity in children with autism. Brain & Development, 27, 509–516. doi: 10.1016/j.braindev.2005.01.003.CrossRefGoogle Scholar
  33. Palmen, S. J. (2004). Neuropathological findings in autism. Brain, 127, 2572–2583. doi: 10.1093/brain/awh287.PubMedCrossRefGoogle Scholar
  34. Pickett, J. P., & London, E. (2005). The neuropathology of autism: A review. Journal of Neuropathology and Experimental Neurology, 64, 925–935. doi: 10.1097/01.jnen.0000186921.42592.6c.PubMedCrossRefGoogle Scholar
  35. Pierson, R. J., & Carpenter, M. B. (1974). Anatomical analysis of pupillary reflex pathways in the rhesus monkey. The Journal of Comparative Neurology, 158, 121–144. doi: 10.1002/cne.901580202.PubMedCrossRefGoogle Scholar
  36. Rubin, L. S. (1961). Patterns of pupillary dilatation and constriction in psychotic adults and autistic children. The Journal of Nervous and Mental Disease, 133, 130–142. doi: 10.1097/00005053-196108000-00009.PubMedCrossRefGoogle Scholar
  37. Schmid, R., Wilhelm, B., & Wilhelm, H. (2000). Naso-temporal asymmetry and contraction anisocoria in the pupillomotor system. Graefes Archive for Clinical and Experimental Ophthalmology, 238, 123–128. doi: 10.1007/PL00007879.CrossRefGoogle Scholar
  38. Smith, S., Ellis, C., & Smith, S. (1979). Inequality of the direct and consensual light reflexes in normal subjects. The British Journal of Ophthalmology, 63, 523–527. doi: 10.1136/bjo.63.7.523.PubMedCrossRefGoogle Scholar
  39. Tsukahara, N., Kiyohara, T., & Ijichi, Y. (1973). The mode of cerebellar control of pupillary light reflex. Brain Research, 60, 244–248. doi: 10.1016/0006-8993(73)90864-0.PubMedCrossRefGoogle Scholar
  40. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.Google Scholar
  41. van Diemen, H. A., van Dongen, M. M., Nauta, J. J., Lanting, P., & Polman, C. H. (1992). Pupillary light reflex latency in patients with multiple sclerosis. Electroencephalography and Clinical Neurophysiology, 82, 213–219. doi: 10.1016/0013-4694(92)90170-M.PubMedCrossRefGoogle Scholar
  42. van Engeland, H., Roelofs, J. W., Verbaten, M. N., & Slangen, J. L. (1991). Abnormal electrodermal reactivity to novel visual stimuli in autistic children. Psychiatry Research, 38, 27–38. doi: 10.1016/0165-1781(91)90050-Y.PubMedCrossRefGoogle Scholar
  43. Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., Salyakina, D., Imielinski, M., Bradfield, J. P., Sleiman, P. M., Kim, C. E., Hou, C., Frackelton, E., Chiavacci, R., Takahashi, N., Sakurai, T., Rappaport, E., Lajonchere, C. M., Munson, J., Estes, A., Korvatska, O., Piven, J., Sonnenblick, L. I., & Alvarez Retuerto, A. I., Herman, E. I., Dong, H., Hutman, T., Sigman, M., Ozonoff, S., Klin, A., Owley, T., Sweeney, J. A., Brune, C. W., Cantor, R. M., Bernier, R., Gilbert, J. R., Cuccaro, M. L., McMahon, W. M., Miller, J., State, M. W., Wassink, T. H., Coon, H., Levy, S. E., Schultz, R. T., Nurnberger, J. I., Haines, J. L., Sutcliffe, J. S., Cook, E. H., Minshew, N. J., Buxbaum, J. D., Dawson, G., Grant, S. F., Geschwind, D. H., Pericak-Vance, M. A., Schellenberg, G. D., & Hakonarson, H. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. doi: 10.1038/nature07999.
  44. Wyatt, H. J., & Musselman, J. F. (1981). Pupillary light reflex in humans: Evidence for an unbalanced pathway from nasal retina, and for signal cancellation in brainstem. Vision Research, 21, 513–525. doi: 10.1016/0042-6989(81)90097-3.PubMedCrossRefGoogle Scholar
  45. Yu, M., Kautz, M. A., Thomas, M. L., Johnson, D., Hotchkiss, E. R., & Russo, M. B. (2007). Operational implications of varying ambient light levels and time-of-day effects on saccadic velocity and pupillary light reflex. Ophthalmic & Physiological Optics, 27, 130–141. doi: 10.1111/j.1475-1313.2006.00450.x.CrossRefGoogle Scholar
  46. Zeegers, M., van Der Grond, J., Durston, S., Nievelstein, R. J., Witkamp, T., van Daalen, E., et al. (2006). Radiological findings in autistic and developmentally delayed children. Brain & Development, 28, 495–499. doi: 10.1016/j.braindev.2006.02.006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaofei Fan
    • 1
  • Judith H. Miles
    • 2
    • 3
  • Nicole Takahashi
    • 2
    • 3
  • Gang Yao
    • 1
    Email author
  1. 1.Department of Biological EngineeringUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.Thompson Center for Autism & Neurodevelopmental DisordersUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Department of Child HealthUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations