Journal of Autism and Developmental Disorders

, Volume 39, Issue 8, pp 1185–1196 | Cite as

Effects of Background Noise on Cortical Encoding of Speech in Autism Spectrum Disorders

  • Nicole RussoEmail author
  • Steven Zecker
  • Barbara Trommer
  • Julia Chen
  • Nina KrausEmail author
Original Paper


This study provides new evidence of deficient auditory cortical processing of speech in noise in autism spectrum disorders (ASD). Speech-evoked responses (~100–300 ms) in quiet and background noise were evaluated in typically-developing (TD) children and children with ASD. ASD responses showed delayed timing (both conditions) and reduced amplitudes (quiet) compared to TD responses. As expected, TD responses in noise were delayed and reduced compared to quiet responses. However, minimal quiet-to-noise response differences were found in children with ASD, presumably because quiet responses were already severely degraded. Moreover, ASD quiet responses resembled TD noise responses, implying that children with ASD process speech in quiet only as well as TD children do in background noise.


Autism Cortical encoding Speech Background noise Children Evoked potentials 



This research was supported by NIH R01 DC01510. The authors declare that they have no competing financial interests. We would like to thank the children who participated in this study and their families; Trent Nicol, Gabriella Musacchia, and Daniel Abrams for assisting with peak picking; Trent Nicol and Erika Skoe for their contributions to this research, particularly in technical aspects of data processing and software development; Jane Hornickel for her assistance with data collection.


  1. Alcantara, J. I., Weisblatt, E. J., Moore, B. C., & Bolton, P. F. (2004). Speech-in-noise perception in high-functioning individuals with autism or asperger’s syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(6), 1107–1114. doi: 10.1111/j.1469-7610.2004.t01-1-00303.x.CrossRefGoogle Scholar
  2. Banai, K., Hornickel, J. M., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex (New York, N.Y.). doi: 10.1093/cercor/bhp024.
  3. Banai, K., Nicol, T., Zecker, S. G., & Kraus, N. (2005). Brainstem timing: Implications for cortical processing and literacy. The Journal of Neuroscience, 25(43), 9850–9857. doi: 10.1523/JNEUROSCI.2373-05.2005.PubMedCrossRefGoogle Scholar
  4. Bishop, D. V., Hardiman, M., Uwer, R., & von Suchodoletz, W. (2007). Maturation of the long-latency auditory ERP: Step function changes at start and end of adolescence. Developmental Science, 10(5), 565–575. doi: 10.1111/j.1467-7687.2007.00619.x.PubMedCrossRefGoogle Scholar
  5. Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23(1), 364–369. doi: 10.1016/j.neuroimage.2004.06.016.PubMedCrossRefGoogle Scholar
  6. Boucher, J. (2003). Language development in autism. International Journal of Pediatric Otorhinolaryngology, 67(Suppl 1), S159–S163. doi: 10.1016/j.ijporl.2003.08.016.PubMedCrossRefGoogle Scholar
  7. Bruneau, N., Bonnet-Brilhault, F., Gomot, M., Adrien, J. L., & Barthelemy, C. (2003). Cortical auditory processing and communication in children with autism: Electrophysiological/behavioral relations. International Journal of Psychophysiology, 51(1), 17–25. doi: 10.1016/S0167-8760(03)00149-1.PubMedCrossRefGoogle Scholar
  8. Bruneau, N., Roux, S., Adrien, J. L., & Barthelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave-T complex). Clinical Neurophysiology, 110(11), 1927–1934. doi: 10.1016/S1388-2457(99)00149-2.PubMedCrossRefGoogle Scholar
  9. Ceponiene, R., Lepisto, T., Shestakova, A., Vanhala, R., Alku, P., Naatanen, R., et al. (2003). Speech-sound-selective auditory impairment in children with autism: They can perceive but do not attend. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5567–5572. doi: 10.1073/pnas.0835631100.PubMedCrossRefGoogle Scholar
  10. Ceponiene, R., Shestakova, A., Balan, P., Alku, P., Yiaguchi, K., & Naatanen, R. (2001). Children’s auditory event-related potentials index sound complexity and “speechness”. The International Journal of Neuroscience, 109(3–4), 245–260.PubMedCrossRefGoogle Scholar
  11. Chawarska, K., Klin, A., Paul, R., & Volkmar, F. (2007). Autism spectrum disorder in the second year: Stability and change in syndrome expression. Journal of Child Psychology and Psychiatry and Allied Disciplines, 48(2), 128–138. doi: 10.1111/j.1469-7610.2006.01685.x.CrossRefGoogle Scholar
  12. Connolly, J. F. (1993). The influence of stimulus intensity, contralateral masking and handedness on the temporal N1 and the T complex components of the auditory N1 wave. Electroencephalography and Clinical Neurophysiology, 86(1), 58–68. doi: 10.1016/0013-4694(93)90067-6.PubMedCrossRefGoogle Scholar
  13. Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental language disorder. Journal of Autism and Developmental Disorders, 19(1), 1–17. doi: 10.1007/BF02212714.PubMedCrossRefGoogle Scholar
  14. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230. doi: 10.1016/j.conb.2005.03.001.PubMedCrossRefGoogle Scholar
  15. Cunningham, J., Nicol, T., Zecker, S. G., Bradlow, A., & Kraus, N. (2001). Neurobiologic responses to speech in noise in children with learning problems: Deficits and strategies for improvement. Clinical Neurophysiology, 112(5), 758–767. doi: 10.1016/S1388-2457(01)00465-5.PubMedCrossRefGoogle Scholar
  16. Cunningham, J., Nicol, T., Zecker, S., & Kraus, N. (2000). Speech-evoked neurophysiologic responses in children with learning problems: Development and behavioral correlates of perception. Ear and Hearing, 21(6), 554–568. doi: 10.1097/00003446-200012000-00003.PubMedCrossRefGoogle Scholar
  17. Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., Musumeci, S. A., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clinical Neurophysiology, 114(9), 1671–1680. doi: 10.1016/S1388-2457(03)00153-6.PubMedCrossRefGoogle Scholar
  18. Freitag, C. M. (2007). The genetics of autistic disorders and its clinical relevance: A review of the literature. Molecular Psychiatry, 12(1), 2–22. doi: 10.1038/ Scholar
  19. Gage, N. M., Siegel, B., Callen, M., & Roberts, T. P. (2003a). Cortical sound processing in children with autism disorder: An MEG investigation. NeuroReport, 14(16), 2047–2051. doi: 10.1097/00001756-200311140-00008.PubMedCrossRefGoogle Scholar
  20. Gage, N. M., Siegel, B., & Roberts, T. P. (2003b). Cortical auditory system maturational abnormalities in children with autism disorder: An MEG investigation. Brain Research, 144(2), 201–209. doi: 10.1016/S0165-3806(03)00172-X.PubMedCrossRefGoogle Scholar
  21. Gorga, M. P., Abbas, P. J., & Worthington, D. W. (1985). Stimulus calibrations in ABR measurements. In J. T. Jacobson (Ed.), The auditory brainstem response (pp. 49–62). San Diego: College-Hill Press.Google Scholar
  22. Groen, M. A., Alku, P., & Bishop, D. V. (2008). Lateralisation of auditory processing in Down syndrome: A study of T-complex peaks Ta and Tb. Biological Psychology, 79(2), 148–157. doi: 10.1016/j.biopsycho.2008.04.003.PubMedCrossRefGoogle Scholar
  23. Hall, J. W. (1992). Handbook of auditory evoked responses. Needham Heights: Allyn and Bacon.Google Scholar
  24. Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220. doi: 10.1038/nn1770.PubMedCrossRefGoogle Scholar
  25. Hardan, A. Y., Jou, R. J., Keshavan, M. S., Varma, R., & Minshew, N. J. (2004). Increased frontal cortical folding in autism: A preliminary MRI study. Psychiatry Research, 131(3), 263–268. doi: 10.1016/j.pscychresns.2004.06.001.PubMedCrossRefGoogle Scholar
  26. Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshavan, M. S., & Minshew, N. J. (2006). An MRI study of increased cortical thickness in autism. The American Journal of Psychiatry, 163(7), 1290–1292. doi: 10.1176/appi.ajp.163.7.1290.PubMedCrossRefGoogle Scholar
  27. Hayes, E. A., Warrier, C. M., Nicol, T. G., Zecker, S. G., & Kraus, N. (2003). Neural plasticity following auditory training in children with learning problems. Clinical Neurophysiology, 114(4), 673–684. doi: 10.1016/S1388-2457(02)00414-5.PubMedCrossRefGoogle Scholar
  28. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52(5), 588–596. doi: 10.1002/ana.10349.PubMedCrossRefGoogle Scholar
  29. Herbert, M. R., & Kenet, T. (2007). Brain abnormalities in language disorders and in autism. Pediatric Clinics of North America, 54(3), 563–583. doi: 10.1016/j.pcl.2007.02.007. vii.PubMedCrossRefGoogle Scholar
  30. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Kennedy, D. N., Filipek, P. A., et al. (2005). Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain, 128(Pt 1), 213–226. doi: 10.1093/brain/awh330.PubMedGoogle Scholar
  31. Hood, L. (1998). Clinical applications of the auditory brainstem response. Singular Publishing Group, Inc: San Diego.Google Scholar
  32. Hoormann, J., Falkenstein, M., & Hohnsbein, J. (2000). Early attention effects in human auditory-evoked potentials. Psychophysiology, 37, 29–42. doi: 10.1017/S0048577200981290.PubMedCrossRefGoogle Scholar
  33. Jacobson, J. T. (Ed.). (1985). The auditory brainstem response. San Diego: College-Hill Press.Google Scholar
  34. Jansson-Verkasalo, E., Ceponiene, R., Kielinen, M., Suominen, K., Jantti, V., Linna, S. L., et al. (2003). Deficient auditory processing in children with Asperger syndrome, as indexed by event-related potentials. Neuroscience Letters, 338(3), 197–200. doi: 10.1016/S0304-3940(02)01405-2.PubMedCrossRefGoogle Scholar
  35. Johnstone, S. J., Barry, R. J., Anderson, J. W., & Coyle, S. F. (1996). Age-related changes in child and adolescent event-related potential component morphology, amplitude and latency to standard and target stimuli in an auditory oddball task. International Journal of Psychophysiology, 24(3), 223–238. doi: 10.1016/S0167-8760(96)00065-7.PubMedCrossRefGoogle Scholar
  36. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(Pt 8), 1811–1821. doi: 10.1093/brain/awh199.PubMedCrossRefGoogle Scholar
  37. King, C., Warrier, C. M., Hayes, E., & Kraus, N. (2002). Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neuroscience Letters, 319(2), 111–115. doi: 10.1016/S0304-3940(01)02556-3.PubMedCrossRefGoogle Scholar
  38. Klatt, D. (1980). Software for cascade/parallel formant synthesizer. The Journal of the Acoustical Society of America, 67, 971–975. doi: 10.1121/1.383940.CrossRefGoogle Scholar
  39. Kraus, N., McGee, T. J., Zecker, S. G., Nicol, T., & Koch, D. B. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science, 273, 971–973. doi: 10.1126/science.273.5277.971.PubMedCrossRefGoogle Scholar
  40. Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2005). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measures. Developmental Science, 8(1), F1–F12. doi: 10.1111/j.1467-7687.2004.00384.x.PubMedCrossRefGoogle Scholar
  41. Lavoie, B. A., Hine, J. E., & Thornton, R. D. (2008). The choice of distracting task can affect the quality of auditory evoked potentials recorded for clinical assessment. International Journal of Audiology, 47(7), 439–444. doi: 10.1080/14992020802033109.PubMedCrossRefGoogle Scholar
  42. Le Couteur, A., Rutter, M., Lord, C., Rios, P., Robertson, S., Holdgrafer, M., et al. (1989). Autism diagnostic interview: A standardized investigator-based instrument. Journal of Autism and Developmental Disorders, 19(3), 363–387. doi: 10.1007/BF02212936.PubMedCrossRefGoogle Scholar
  43. Lepisto, T., Kujala, T., Vanhala, R., Alku, P., Huotilainen, M., & Naatanen, R. (2005). The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Research, 1066(1–2), 147–157. doi: 10.1016/j.brainres.2005.10.052.PubMedCrossRefGoogle Scholar
  44. Lepisto, T., Silokallio, S., Nieminen-von Wendt, T., Alku, P., Naatanen, R., & Kujala, T. (2006). Auditory perception and attention as reflected by the brain event-related potentials in children with asperger syndrome. Clinical Neurophysiology, 117(10), 2161–2171. doi: 10.1016/j.clinph.2006.06.709.PubMedCrossRefGoogle Scholar
  45. Lincoln, A. J., Courchesne, E., Harms, L., & Allen, M. (1995). Sensory modulation of auditory stimuli in children with autism and receptive developmental language disorder: Event-related brain potential evidence. Journal of Autism and Developmental Disorders, 25(5), 521–539. doi: 10.1007/BF02178298.PubMedCrossRefGoogle Scholar
  46. London, E. (2007). The role of the neurobiologist in redefining the diagnosis of autism. Brain Pathology (Zurich, Switzerland), 17(4), 408–411. doi: 10.1111/j.1750-3639.2007.00103.x.CrossRefGoogle Scholar
  47. Lord, C., & Richler, J. (2006). Early diagnosis of children with autism spectrum disorders. In T. Charman & W. Stone (Eds.), Social and communication development in autism spectrum disorders: Early identification, diagnosis, & intervention (pp. 35–59). New York, NY: Guilford Press.Google Scholar
  48. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. doi: 10.1023/A:1005592401947.PubMedCrossRefGoogle Scholar
  49. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185–212. doi: 10.1007/BF02211841.PubMedCrossRefGoogle Scholar
  50. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. doi: 10.1007/BF02172145.PubMedCrossRefGoogle Scholar
  51. Martin, B. A., Sigal, A., Kurtzberg, D., & Stapells, D. R. (1997). The effects of decreased audibility produced by high-pass noise masking on cortical event-related potentials to speech sounds/ba/and /da/. The Journal of the Acoustical Society of America, 101(3), 1585–1599. doi: 10.1121/1.418146.PubMedCrossRefGoogle Scholar
  52. McArthur, G. M., Bishop, D. V., & Proudfoot, M. (2003). Do video sounds interfere with auditory event-related potentials? Behavior Research Methods, Instruments and Computers: a journal of the Psychonomic Society Inc, 35(2), 329–333.Google Scholar
  53. Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64(7), 945–950. doi: 10.1001/archneur.64.7.945.PubMedCrossRefGoogle Scholar
  54. Muller, R. A., Behen, M. E., Rothermel, R. D., Chugani, D. C., Muzik, O., Mangner, T. J., et al. (1999). Brain mapping of language and auditory perception in high-functioning autistic adults: A pet study. Journal of Autism and Developmental Disorders, 29(1), 19–31. doi: 10.1023/A:1025914515203.PubMedCrossRefGoogle Scholar
  55. Naatanen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375–425. doi: 10.1111/j.1469-8986.1987.tb00311.x.PubMedCrossRefGoogle Scholar
  56. Oades, R. D., Walker, M. K., Geffen, L. B., & Stern, L. M. (1988). Event-related potentials in autistic and healthy children on an auditory choice reaction time task. International Journal of Psychophysiology, 6(1), 25–37. doi: 10.1016/0167-8760(88)90032-3.PubMedCrossRefGoogle Scholar
  57. Ponton, C., Eggermont, J. J., Khosla, D., Kwong, B., & Don, M. (2002). Maturation of human central auditory system activity: Separating auditory evoked potentials by dipole source modeling. Clinical Neurophysiology, 113(3), 407–420. doi: 10.1016/S1388-2457(01)00733-7.PubMedCrossRefGoogle Scholar
  58. Rapin, I., & Dunn, M. (2003). Update on the language disorders of individuals on the autistic spectrum. Brain and Development, 25(3), 166–172. doi: 10.1016/S0387-7604(02)00191-2.PubMedCrossRefGoogle Scholar
  59. Rojas, D. C., Bawn, S. D., Benkers, T. L., Reite, M. L., & Rogers, S. J. (2002). Smaller left hemisphere planum temporale in adults with autistic disorder. Neuroscience Letters, 328(3), 237–240. doi: 10.1016/S0304-3940(02)00521-9.PubMedCrossRefGoogle Scholar
  60. Rojas, D. C., Camou, S. L., Reite, M. L., & Rogers, S. J. (2005). Planum temporale volume in children and adolescents with autism. Journal of Autism and Developmental Disorders, 35(4), 479–486. doi: 10.1007/s10803-005-5038-7.PubMedCrossRefGoogle Scholar
  61. Russo, N., Nicol, T., Trommer, B., Zecker, S., & Kraus, N. (2009). Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Developmental Science. doi: 10.1111/j.1467-7687.2008.00790.x.
  62. Russo, N., Skoe, E., Trommer, B., Nicol, T., Zecker, S., Bradlow, A., et al. (2008). Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clinical Neurophysiology, 119(8), 1720–1731. doi: 10.1016/j.clinph.2008.01.108.PubMedCrossRefGoogle Scholar
  63. Saalasti, S., Lepistö, T., Toppila, E., Kujala, T., Laakso, M., Nieminen-von Wendt, T., et al. (2008). Language abilities of children with asperger syndrome. Journal of Autism and Developmental Disorders, 38(8), 1574–1580. doi: 10.1007/s10803-008-0540-3.PubMedCrossRefGoogle Scholar
  64. Salmond, C. H., Vargha-Khadem, F., Gadian, D. G., de Haan, M., & Baldeweg, T. (2007). Heterogeneity in the patterns of neural abnormality in autistic spectrum disorders: Evidence from ERP and MRI. Cortex, 43(6), 686–699. doi: 10.1016/S0010-9452(08)70498-2.PubMedCrossRefGoogle Scholar
  65. Semel, E., Wiig, E. H., & Secord, W. A. (2003). Clinical evaluation of language fundamentals (4th ed.). San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  66. Seri, S., Cerquiglini, A., Pisani, F., & Curatolo, P. (1999). Autism in tuberous sclerosis: Evoked potential evidence for a deficit in auditory sensory processing. Clinical Neurophysiology, 110(10), 1825–1830. doi: 10.1016/S1388-2457(99)00137-6.PubMedCrossRefGoogle Scholar
  67. Shriberg, L. D., Paul, R., McSweeny, J. L., Klin, A. M., Cohen, D. J., & Volkmar, F. R. (2001). Speech and prosody characteristics of adolescents and adults with high-functioning autism and asperger syndrome. Journal of Speech, Language, and Hearing Research: JSLHR, 44(5), 1097–1115. doi: 10.1044/1092-4388(2001/087).PubMedCrossRefGoogle Scholar
  68. Siegal, M., & Blades, M. (2003). Language and auditory processing in autism. Trends in Cognitive Sciences, 7(9), 378–380. doi: 10.1016/S1364-6613(03)00194-3.PubMedCrossRefGoogle Scholar
  69. Tager-Flusberg, H., & Caronna, E. (2007). Language disorders: Autism and other pervasive developmental disorders. Pediatric Clinics of North America, 54(3), 469–481. doi: 10.1016/j.pcl.2007.02.011. vi.PubMedCrossRefGoogle Scholar
  70. Tsatsanis, K. (2005). Neuropsychological aspects of autism and related conditions. In F. Volkmar, R. Paul, A. Klin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (Vol. 1, pp. 365–381). New York, NY: Wiley & Sons.Google Scholar
  71. Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(1), 135–170. doi: 10.1046/j.0021-9630.2003.00317.x.CrossRefGoogle Scholar
  72. Warrier, C. M., Johnson, K. L., Hayes, E. A., Nicol, T., & Kraus, N. (2004). Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise. Experimental Brain Research, 157(4), 431–441. doi: 10.1007/s00221-004-1857-6.CrossRefGoogle Scholar
  73. Whitehouse, A. J. O., & Bishop, D. (2008). Do children with autism ‘switch off’ to speech sounds? An investigation using event-related potentials. Developmental Science, 11(4), 516–524. doi: 10.1111/j.1467-7687.2008.00697.x.PubMedCrossRefGoogle Scholar
  74. Whiting, K. A., Martin, B. A., & Stapells, D. R. (1998). The effects of broadband noise masking on cortical event-related potentials to speech sounds/ba/and/da/. Ear and Hearing, 19(3), 218–231. doi: 10.1097/00003446-199806000-00005.PubMedCrossRefGoogle Scholar
  75. Wible, B., Nicol, T., & Kraus, N. (2002). Abnormal neural encoding of repeated speech stimuli in noise in children with learning problems. Clinical Neurophysiology, 113(4), 485–494. doi: 10.1016/S1388-2457(02)00017-2.PubMedCrossRefGoogle Scholar
  76. Wible, B., Nicol, T., & Kraus, N. (2004). Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biological Psychology, 67, 299–317. doi: 10.1016/j.biopsycho.2004.02.002.PubMedCrossRefGoogle Scholar
  77. Wible, B., Nicol, T., & Kraus, N. (2005). Correlation between brainstem and cortical auditory processes in normal and language-impaired children. Brain, 128(Pt 2), 417–423. doi: 10.1093/brain/awh367.PubMedGoogle Scholar
  78. Wickelgren, I. (2005). Neurology. Autistic brains out of synch? Science [New York, N. Y (Dayton, Ohio)], 308(5730), 1856–1858.Google Scholar
  79. Woerner, C., & Overstreet, K. (Eds.). (1999). Wechsler abbreviated scale of intelligence (WASI). San Antonio, TX: The Psychological Corporation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Roxelyn and Richard Pepper Department of Communication SciencesNorthwestern UniversityEvanstonUSA
  2. 2.Department of Pediatrics, Division of NeurologyMaimonides Medical CenterBrooklynUSA
  3. 3.Biological Sciences DepartmentNorthwestern UniversityEvanstonUSA
  4. 4.The Roxelyn and Richard Pepper Department of Communication Sciences; Neurobiology & Physiology; OtolaryngologyNorthwestern UniversityEvanstonUSA

Personalised recommendations