Journal of Autism and Developmental Disorders

, Volume 39, Issue 4, pp 619–634 | Cite as

Effects of Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Gamma Frequency Oscillations and Event-Related Potentials During Processing of Illusory Figures in Autism

  • Estate M. SokhadzeEmail author
  • Ayman El-Baz
  • Joshua Baruth
  • Grace Mathai
  • Lonnie Sears
  • Manuel F. Casanova
Original Paper


Previous studies by our group suggest that the neuropathology of autism is characterized by a disturbance of cortical modularity. In this model a decrease in the peripheral neuropil space of affected minicolumns provides for an inhibitory deficit and a readjustment in their signal to noise bias during information processing. In this study we proposed using low frequency transcranial magnetic stimulation (rTMS) as a way increasing the surround inhibition of minicolumns in autism. Thirteen patients (ADOS and ADI-R diagnized) and equal number of controls participated in the study. Repetitive TMS was delivered at 0.5 Hz, 2 times per week for 3 weeks. Outcome measures based on event-related potentials (ERP), induced gamma activity, and behavioral measures showed significant post-TMS improvement. The results suggest that rTMS offers a potential therapeutic intervention for autism.


Autism Minicolumns Event-related potentials Electroencephalography Gamma frequencies 


  1. Alonso, P., Pujol, J., Cardoner, N., Benlloch, L., Deus, J., Menchón, J. M., et al. (2001). Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: A double-blind, placebo-controlled study. American Journal of Psychiatry, 158, 1143–1145.PubMedCrossRefGoogle Scholar
  2. Aman, M. G. (2004). Management of hyperactivity and other acting-out problems in patients with autism spectrum disorder. Seminars in Pediatric Neurology, 11, 225–228.PubMedCrossRefGoogle Scholar
  3. Aman, M. G., & Singh, N. N. (1994). Aberrant behavior checklist—Community. Supplementary manual. East Aurora, NY: Slosson Educational Publications.Google Scholar
  4. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV TR) (4th ed.). Washington, DC: American Psychiatric Association. (text revised).CrossRefGoogle Scholar
  5. Barker, A. T. (1999). The history and basic principles of magnetic nerve stimulation. Electroencephalography and Clinical Neurophysiology. Supplement, 51, 3–21.PubMedGoogle Scholar
  6. Belmonte, M. K. (2000). Abnormal attention in autism shown by steady-state visual evoked potentials. Autism, 4, 269–285.CrossRefGoogle Scholar
  7. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L., Carper, R., & Webb, S. J. (2004a). Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24, 9228–9231.PubMedCrossRefGoogle Scholar
  8. Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R., Greenhough, W. T., Beckel-Mitchener, A., et al. (2004b). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9, 646–663.PubMedGoogle Scholar
  9. Belmonte, M. K., & Yurgelun-Todd, D. A. (2003a). Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Research. Cognitive Brain Research, 17, 651–664.PubMedCrossRefGoogle Scholar
  10. Belmonte, M. K., & Yurgelun-Todd, D. A. (2003b). Anatomic dissociation of selective and suppressive processes in visual attention. NeuroImage, 19, 180–189.PubMedGoogle Scholar
  11. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depend on stimulus complexity. Brain, 128, 2430–2441.PubMedCrossRefGoogle Scholar
  12. Bodfish, J. W., Symons, F. J., & Lewis, M. H. (1999). Repetitive behavior scale. Morganton, NC: Western Carolina Center Research Reports.Google Scholar
  13. Bodfish, J. W., Symons, F. S., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30, 237–243.PubMedCrossRefGoogle Scholar
  14. Bomba, M. D., & Pang, E. W. (2004). Cortical auditory evoked potentials in autism: A review. International Journal of Psychophysiology, 53, 161–169.PubMedCrossRefGoogle Scholar
  15. Bottger, D., Herrmann, C., & von Ramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups. International Journal of Psychophysiology, 45, 245–251.PubMedCrossRefGoogle Scholar
  16. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14, 209–224.PubMedCrossRefGoogle Scholar
  17. Brown, C. (2005). EEG in autism: Is there just too much going on in there? In F. Manuel & M. F. Casanova (Eds.), Recent developments in autism research (pp. 109–126). New York: Nova Science Publishers.Google Scholar
  18. Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41, 364–376.PubMedCrossRefGoogle Scholar
  19. Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn and evolution of the brain. Brain, Behavior and Evolution, 60(3), 125–151.PubMedCrossRefGoogle Scholar
  20. Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 133–144). New York: Nova Biomedical Books.Google Scholar
  21. Casanova, M. F. (2006). Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy. The Neuroscientist, 12(5), 435–441.PubMedCrossRefGoogle Scholar
  22. Casanova, M. F., Buxhoeveden, D., & Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. The Neuroscientist, 9, 496–507.PubMedCrossRefGoogle Scholar
  23. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002a). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  24. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b). Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology, 17, 515–521.PubMedCrossRefGoogle Scholar
  25. Casanova, M. F., van Kooten, I., Switala, A. E., van England, H., Heinsen, H., Steinbuch, H. W. M., et al. (2006a). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research, 6(3–4), 127–133.CrossRefGoogle Scholar
  26. Casanova, M. F., van Kooten, I., van Engeland, H., Heinsen, H., Steinbursch, H. W. M., Hof, P. R., et al. (2006b). Minicolumnar abnormalities in autism II. Neuronal size and number. Acta Neuropathologica, 112(3), 287–303.PubMedCrossRefGoogle Scholar
  27. Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalography and Clinical Neurophysiology, 75, 207–220.PubMedCrossRefGoogle Scholar
  28. Ciesielski, K. T., Knoght, J. E., Prince, R. J., Harris, R. J., & Handmaker, S. D. (1995). Event-related potentials in cross-modal divided attention in autism. Neuropsychologia, 33, 225–246.PubMedCrossRefGoogle Scholar
  29. Constantino, J. N., & Gruber, C. P. (2005). The social responsiveness scale (SRS) manual. Los Angeles, CA: Western Psychological Services.Google Scholar
  30. Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental disorder. Journal of Autism and Developmental Disorders, 19, 1–17.PubMedCrossRefGoogle Scholar
  31. Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2002). Transcranial magnetic stimulation: A new investigational and treatment tool in psychiatry. Journal of Neuropsychiatry and Clinical Neurosciences, 14(4), 406–415.PubMedGoogle Scholar
  32. Dawson, G., Finley, C., Phillips, S., Galpert, L., & Lewy, A. (1988). Reduced P3 amplitude of the event-related brain potential: Its relationship to language ability in autism. Journal of Autism and Developmental Disorders, 18, 493–504.PubMedCrossRefGoogle Scholar
  33. DeFelipe, J. (1999). Chandelier cells and epilepsy. Brain, 122, 1807–1822.PubMedCrossRefGoogle Scholar
  34. DeFelipe, J. (2004). Cortical microanatomy and human brain disorders: Epilepsy. Cortex, 40(1), 232–233.PubMedCrossRefGoogle Scholar
  35. DeFelipe, J., Hendry, S. H. C., Hashikawa, T., Molinary, M., & Jones, E. G. (1990). A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience, 37, 655–673.PubMedCrossRefGoogle Scholar
  36. Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27, 419–451.PubMedCrossRefGoogle Scholar
  37. Engel, A. K., Konig, P., Kreiter, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 252, 218–226.CrossRefGoogle Scholar
  38. Favorov, O. V., & Kelly, D. G. (1994a). Minicolumnar organization within somatosensory cortical segregates, I: Development of afferent connections. Cerebral Cortex, 4, 408–427.PubMedCrossRefGoogle Scholar
  39. Favorov, O. V., & Kelly, D. G. (1994b). Minicolumnar organization within somatosensory cortical segregates, II: Emergent functional properties. Cerebral Cortex, 4, 428–442.PubMedCrossRefGoogle Scholar
  40. Felli, R., Fernandez, G., Klaver, P., Elger, C. E., & Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research Reviews, 42, 265–272.CrossRefGoogle Scholar
  41. Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., Musumeci, S. A., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clinical Neurophysiology, 114, 1671–1680.PubMedCrossRefGoogle Scholar
  42. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2001). Structured clinical interview for DSM-IV-TR axis I disorders, non-patient edition (SCID—I/P). New York: New York State Psychiatric Institute.Google Scholar
  43. Frith, U., & Happé, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115–132.PubMedCrossRefGoogle Scholar
  44. Gershon, A. A., Dannon, P. N., & Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160, 835–845.PubMedCrossRefGoogle Scholar
  45. Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., et al. (1989). The yale-brown obsessive compulsive scale, I: Development, use, and reliability. Archives of General Psychiatry, 46, 1006–1011.PubMedGoogle Scholar
  46. Goupillaud, P., Grossman, A., & Morlet, J. (1984). Cycle-octave and related transforms in seismic signal analysis. Geoexploration, 23, 85–102.CrossRefGoogle Scholar
  47. Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the USA, 86, 1698–1702.PubMedCrossRefGoogle Scholar
  48. Greenberg, B. D. (2007). Transcranial magnetic stimulation in anxiety disorders. In M. S. George & R. H. Belmaker (Eds.), Thanscranial magnetic stimulation in clinical psychiatry (pp. 165–178). Washington, DC: American Psychiatric Publishing Inc.Google Scholar
  49. Greenberg, B. D., George, M. S., Martin, J. D., Benjamin, J., Schlaepfer, T. E., Altemus, M., et al. (1997). Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: A preliminary study. American Journal of Psychiatry, 154, 867–869.PubMedGoogle Scholar
  50. Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817–832.PubMedCrossRefGoogle Scholar
  51. Gruber, T., Muller, M. M., Keil, A., & Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074–2085.PubMedCrossRefGoogle Scholar
  52. Guy, W. (1976). Clinical global impressions. ECDEU assessment manual for psychopharmacology. Rockville, MD: National Institute of Mental Health.Google Scholar
  53. Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.PubMedCrossRefGoogle Scholar
  54. Helmich, R. C., Siebner, H. R., Bakker, M., Munchau, A., & Bloem, B. R. (2006). Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease. Journal of Neurological Sciences, 248, 84–96.CrossRefGoogle Scholar
  55. Herrmann, C. S., & Mecklinger, A. (2000). Magnetoencephalographic responses to illusory figures: Early evoked gamma is affected by processing of stimulus features. International Journal of Psychophysiology, 38, 265–281.PubMedCrossRefGoogle Scholar
  56. Herrmann, C. S., Mecklinger, A., & Pfeirffer, E. (1999). Gamma responses and ERPs in a visual classification task. Clinical Neurophysiology, 110(4), 636–642.PubMedCrossRefGoogle Scholar
  57. Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 25, 465–476.PubMedCrossRefGoogle Scholar
  58. Herrmann, C. S., & Mecklinger, A. (2000). Magnetoencephalographic responses to illusory figures: Early evoked gamma is affected by processing of stimulus features. International Journal of Psychophysiology, 38, 265–281.PubMedCrossRefGoogle Scholar
  59. Hoffman, R. E., & Cavus, I. (2002). Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. American Journal of Psychiatry, 159, 1093–1102.PubMedCrossRefGoogle Scholar
  60. Holcomb, P. J., Ackerman, P. T., & Dykman, R. A. (1985). Cognitive event-related brain potentials in children with attention and reading deficits. Psychophysiology, 22, 656–667.PubMedCrossRefGoogle Scholar
  61. Holtzheimer, P. E., Russo, J., & Avery, D. H. (2001). A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression. Psychopharmacology Bulletin, 35, 149–169.PubMedGoogle Scholar
  62. Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. The Journal of Neuroscience, 26(6), 1669–1672.PubMedCrossRefGoogle Scholar
  63. Kanizsa, G. (1976). Subjective contours. Scientific American, 235, 48–52.CrossRefGoogle Scholar
  64. Katayama, J., & Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 23–33.PubMedCrossRefGoogle Scholar
  65. Keil, A., Muller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a Gestalt. The Journal of Neuroscience, 19, 7152–7161.PubMedGoogle Scholar
  66. Kemner, C., van der Gaag, R. J., Verbaten, M., & van Engeland, H. (1999). ERP differences among subtypes of pervasive developmental disorders. Biological Psychiatry, 46, 781–789.PubMedCrossRefGoogle Scholar
  67. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1994). Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalography and Clinical Neurophysiology, 92, 225–237.PubMedCrossRefGoogle Scholar
  68. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1995). Auditory event-related potentials in autistic children and three different control groups. Biological Psychiatry, 38, 150–165.PubMedCrossRefGoogle Scholar
  69. Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview—Revised (ADI-R). Los Angeles, CA: Western Psychological Services.Google Scholar
  70. Lincoln, A. J., Courchesne, E., Harms, L., & Allen, M. (1993). Contextual probability evaluation in autistic, receptive developmental disorder and control children: Event-related potential evidence. Journal of Autism and Developmental Disorders, 23, 37–58.PubMedCrossRefGoogle Scholar
  71. Lohmann, H., & Köppen, H. J. (1995). Postnatal development of pyramidal dendritic and axonal bundles in the visual cortex of the rat. Journal für Hirnforsch, 36(1), 101–111.Google Scholar
  72. Loo, C., & Mitchell, P. (2005). A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders, 88, 255–267.PubMedCrossRefGoogle Scholar
  73. Martin, J. L. R., Barbanoj, M. J., Pérez, V., & Sacristán, M. (2003). Transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder. Cochrane Database of Systematic Reviews, 2003(2), Art No.: CD003387. doi: 10.1002/14651858.CD003387.
  74. Morgan, B., Maybery, M., & Durkin, K. (2003). Weak central coherence, poor joint attention, and low verbal ability: Independent deficits in early autism. Developmental Psychology, 39(4), 646–656.PubMedCrossRefGoogle Scholar
  75. Mottron, L., Burack, J., Iarocci, G., Belleville, S., & Enns, J. T. (2003). Locally oriented perception with intact global processing among adolescents with high-functioning autism: Evidence from multiple paradigms. Journal of Child Psychology and Psychiatry, 44, 904–913.PubMedCrossRefGoogle Scholar
  76. Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120, 701–722.PubMedCrossRefGoogle Scholar
  77. Muller, M. M., Gruber, T., & Keil, A. (2000). Modulation of induced gamma band activity in the human EEG by attention and visual information processing. International Journal of Psychophysiology, 38, 283–299.PubMedCrossRefGoogle Scholar
  78. Nakatani, C., Ito, J., Nikolaev, A. R., Gong, P., & Leeuwen, C. V. (2005). Phase synchronization analysis of EEG during attentional blink. Journal of Cognitive Neuroscience, 17(12), 1969–1979.PubMedCrossRefGoogle Scholar
  79. Oades, R. D., Walker, M. K., Geffen, L. B., & Stern, L. M. (1988). Event-related potentials in autistic and healthy children on an auditory choice reaction time task. International Journal of Psychophysiology, 6, 25–37.PubMedCrossRefGoogle Scholar
  80. Pavlova, M., Birbaumer, N., & Sokolov, A. (2006). Attentional modulation of cortical neuromagnetic gamma response to biological movement. Cerebral Cortex, 16, 321–327.PubMedCrossRefGoogle Scholar
  81. Plaisted, K., Saksida, L., Alcántara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Philosophical Transactions of the Royal Society of London B. Series B, Biological Sciences, 358, 375–386.CrossRefGoogle Scholar
  82. Polich, J. (2003). Theoretical overview of P3a and P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston: Kluwer Academic Press.Google Scholar
  83. Potts, G. F., Patel, S. H., & Azzam, P. N. (2004). Impact of instructed relevance on the visual ERP. International Journal of Psychophysiology, 52, 197–209.PubMedCrossRefGoogle Scholar
  84. Prasko, J., Pasková, B., Záleský, R., Novák, T., Kopecek, M., Bares, M., et al. (2006). The effect of repetitive transcranial magnetic stimulation (rTMS) on symptoms in obsessive compulsive disorder. A randomized, double blind, sham controlled study. Neuro Endocrinology Letters, 27, 327–332.PubMedGoogle Scholar
  85. Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63, 164–172.PubMedCrossRefGoogle Scholar
  86. Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception’s shadow: Long distance synchronization of human brain activity. Nature, 397, 430–433.PubMedCrossRefGoogle Scholar
  87. Roid, G. H. (2003). Stanford–Binet intelligence scales. Technical manual (5th ed.). Itasca, IL: Riverside Publishing.Google Scholar
  88. Rosenberg, P. B., Mehndiratta, R. B., Mehndiratta, Y. P., Wamer, A., Rosse, R. B., & Balish, M. (2002). Repetitive magnetic stimulation treatment of comorbid posttraumatic stress disorder and major depression. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 270–276.PubMedGoogle Scholar
  89. Rossi, S., & Rossini, P. M. (2004). TMS in cognitive plasticity and the potential for rehabilitation. Trends in Cognitive Sciences, 86, 273–279.CrossRefGoogle Scholar
  90. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2, 255–267.PubMedCrossRefGoogle Scholar
  91. Sachdev, P. S., Loo, C. K., Mitchell, P. B., McFarquhar, T. F., & Malhi, G. S. (2007). Repetitive transcranial magnetic stimulation for the treatment of obsessive compulsive disorder: A double-blind controlled investigation. Psychological Medicine, 37, 1645–1649.PubMedCrossRefGoogle Scholar
  92. Sachdev, P. S., McBride, R., Loo, C. K., Mitchell, P. B., Malhi, G. S., & Croker, V. M. (2001). Right versus left prefrontal transcranial magnetic stimulation for obsessive-compulsive disorder: A preliminary investigation. Journal of Clinical Psychiatry, 62, 981–984.PubMedGoogle Scholar
  93. Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition. Journal of Physiology, Paris, 97, 355–363.PubMedCrossRefGoogle Scholar
  94. Tallon-Baudry, C., Bertrand, O., Henaff, M.-A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex, 15, 654–662.PubMedCrossRefGoogle Scholar
  95. Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. The Journal of Neuroscience, 18(11), 4244–4254.PubMedGoogle Scholar
  96. Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T., et al. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Brain Research. Cognitive Brain Research, 11, 127–145.PubMedCrossRefGoogle Scholar
  97. Varela, F., Lachaux, J., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2, 229–239.PubMedCrossRefGoogle Scholar
  98. Verbaten, M. N., Roelofs, J. W., van Engeland, H., Kenemans, J. K., & Slangen, J. L. (1991). Abnormal visual event-related potentials of autistic children. Journal of Autism Developmental Disorders, 21, 449–470.CrossRefGoogle Scholar
  99. Von Stein, A., Rappelsberger, P., Sarnthein, J., & Petsche, H. (1999). Synchronization between temporal and parietal cortex during multimodal object processing in man. Cerebral Cortex, 9, 137–150.CrossRefGoogle Scholar
  100. Walsh, V., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation: A neurochronometrics of mind. Cambridge, MA: MIT Press.Google Scholar
  101. Wassermann, E. M., & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clinical Neurophysiology, 112, 1367–1377.PubMedCrossRefGoogle Scholar
  102. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  103. Wijers, A. A., Mulder, G., Gunter, T. C., & Smid, H. G. O. M. (1996). Brain potential analysis of selective attention. In O. Neumann & A. F. Sanders (Eds.), Handbook of perception and action. Attention (Vol. 3, pp. 333–387). Tullamore, Ireland: Academic Press.Google Scholar
  104. Yáñez, I. B., Muñoz, A., Contreras, J., Gonzalez, J., Rodriguez-Veiga, E., & DeFelipe, J. (2005). Double bouquet cell in the human cerebral cortex and a comparison with other mammals. Journal of Comparative Neurology, 486(4), 344–360.PubMedCrossRefGoogle Scholar
  105. Ziemann, U. (2004). TMS induced plasticity in human cortex. Reviews Neuroscience, 15(4), 253–266.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Estate M. Sokhadze
    • 1
    Email author
  • Ayman El-Baz
    • 2
    • 3
  • Joshua Baruth
    • 1
    • 5
  • Grace Mathai
    • 4
  • Lonnie Sears
    • 4
  • Manuel F. Casanova
    • 3
    • 5
  1. 1.Cognitive Neuroscience Laboratory, Department of Psychiatry and Behavioral ScienceUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Psychiatry and Behavioral ScienceUniversity of Louisville School of MedicineLouisvilleUSA
  4. 4.Department of PediatricsUniversity of LouisvilleLouisvilleUSA
  5. 5.Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations