Advertisement

Journal of Autism and Developmental Disorders

, Volume 39, Issue 3, pp 511–520 | Cite as

Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

  • Flora M. VaccarinoEmail author
  • Elena L. Grigorenko
  • Karen Müller Smith
  • Hanna E. Stevens
Original Paper

Abstract

Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that Fibroblast Growth Factors (FGF), a family of genes that regulate cortical size and connectivity, may be responsible for these developmental alterations. Studies in animal models suggest that mutations in FGF genes lead to altered cortical volume, excitatory cortical neuron number, minicolum pathology, hyperactivity and social deficits. Thus, many risk factors may converge upon FGF-regulated pathogenetic pathways, which alter excitatory/inhibitory balance and cortical modular architecture, and predispose to autism spectrum disorders.

Keywords

Fibroblast growth factors Excitatory pyramidal neurons Cerebral cortex Autism spectrum disorders Progenitor cells 

Notes

Acknowledgments

This work was supported by NIH grants MH067715, Autism Speaks and the NARSAD Foundation. We thank Shawna Ellis for technical assistance and all members of the Vaccarino lab for helpful discussions.

References

  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. DSM-IV (4th edn.). Washington, DC: American Psychiatric Association.Google Scholar
  2. Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175–183.PubMedGoogle Scholar
  3. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedGoogle Scholar
  4. Blak, A. A., Naserke, T., Weisenhorn, D. M., Prakash, N., Partanen, J., & Wurst, W. (2005). Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Developmental Dynamics, 233, 1023–1030. doi: 10.1002/dvdy.20386.PubMedGoogle Scholar
  5. Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23, 364–369. doi: 10.1016/j.neuroimage.2004.06.016.PubMedGoogle Scholar
  6. Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42, 318–321. doi: 10.1136/jmg.2004.024646.PubMedGoogle Scholar
  7. Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switzer, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32, 483–491. doi: 10.1111/j.1365-2990.2006.00745.x.PubMedGoogle Scholar
  8. Cameron, R. S., & Rakic, P. (1991). Glial cell lineage in the cerebral cortex: A review and synthesis. Glia, 4, 124–137. doi: 10.1002/glia.440040204.PubMedGoogle Scholar
  9. Campbell, D. B., Sutcliffe, J. S., Ebert, P. J., Militerni, R., Bravaccio, C., Trillo, S., et al. (2006). A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 103, 16834–16839. doi: 10.1073/pnas.0605296103.PubMedGoogle Scholar
  10. Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57, 126–133. doi: 10.1016/j.biopsych.2004.11.005.PubMedGoogle Scholar
  11. Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage, 16, 1038–1051. doi: 10.1006/nimg.2002.1099.PubMedGoogle Scholar
  12. Casanova, M. F. (2004). White matter volume increase and minicolumns in autism. Annals of Neurology, 56, 453. doi: 10.1002/ana.20196. author reply 454.PubMedGoogle Scholar
  13. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  14. Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303. doi: 10.1007/s00401-006-0085-5.PubMedGoogle Scholar
  15. Chaste, P., Nygren, G., Anckarsater, H., Rastam, M., Coleman, M., Leboyer, M., et al. (2007). Mutation screening of the ARX gene in patients with autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 228–230. doi: 10.1002/ajmg.b.30440.Google Scholar
  16. Cheng, Y., Black, I. B., & DiCicco-Bloom, E. (2002). Hippocampal granule neuron production and population size are regulated by levels of bFGF. The European Journal of Neuroscience, 15, 3–12. doi: 10.1046/j.0953-816x.2001.01832.x.PubMedGoogle Scholar
  17. Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences of the United States of America, 104, 7652–7657. doi: 10.1073/pnas.0702225104.PubMedGoogle Scholar
  18. Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106–111. doi: 10.1002/mrdd.20020.PubMedGoogle Scholar
  19. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi: 10.1001/jama.290.3.337.PubMedGoogle Scholar
  20. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  21. Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi: 10.1016/j.ijdevneu.2005.01.003.PubMedGoogle Scholar
  22. Davidovitch, M., Patterson, B., & Gartside, P. (1996). Head circumference measurements in children with autism. Journal of Child Neurology, 11, 389–393.PubMedCrossRefGoogle Scholar
  23. Dawson, G., Munson, J., Webb, S. J., Nalty, T., Abbott, R., & Toth, K. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry, 61, 458–464. doi: 10.1016/j.biopsych.2006.07.016.PubMedGoogle Scholar
  24. de Carlos, J. A., Lopez-Mascaraque, L., & Valverde, F. (1996). Dynamics of cell migration from the lateral ganglionic eminence in the rat. The Journal of Neuroscience, 16, 6146–6156.PubMedGoogle Scholar
  25. Dementieva, Y. A., Vance, D. D., Donnelly, S. L., Elston, L. A., Wolpert, C. M., Ravan, S. A., et al. (2005). Accelerated head growth in early development of individuals with autism. Pediatric Neurology, 32, 102–108. doi: 10.1016/j.pediatrneurol.2004.08.005.PubMedGoogle Scholar
  26. Desai, A. R., & McConnell, S. K. (2000). Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development (Cambridge, England). Supplement, 127, 2863–2872.Google Scholar
  27. Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27. doi: 10.1038/ng1933.PubMedGoogle Scholar
  28. el-Husseini, A.e.-D., Paterson, J. A., & Shiu, R. P. (1994). Basic fibroblast growth factor (bFGF) and two of its receptors, FGFR1 and FGFR2: Gene expression in the rat brain during postnatal development as determined by quantitative RT-PCR. Molecular and Cellular Endocrinology, 104, 191–200.Google Scholar
  29. Feng, J., Schroer, R., Yan, J., Song, W., Yang, C., Bockholt, A., et al. (2006). High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neuroscience Letters, 409, 10–13.PubMedGoogle Scholar
  30. Fidler, D. J., Bailey, J. N., & Smalley, S. L. (2000). Macrocephaly in autism and other pervasive developmental disorders. Developmental Medicine and Child Neurology, 42, 737–740.PubMedGoogle Scholar
  31. Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.PubMedGoogle Scholar
  32. Fombonne, E., Roge, B., Claverie, J., Courty, S., & Fremolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29, 113–119.PubMedGoogle Scholar
  33. Frantz, G. D., & McConnell, S. K. (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17, 55–61.PubMedGoogle Scholar
  34. Fukumoto, A., Hashimoto, T., Ito, H., Nishimura, M., Tsuda, Y., Miyazaki, M., et al. (2008). Growth of head circumference in autistic infants during the first year of life. Journal of Autism and Developmental Disorders, 38, 411–418.PubMedGoogle Scholar
  35. Ganat, Y. M., Silbereis, J., Cave, C., Ngu, H., Anderson, G. M., Ohkubo, Y., et al. (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. Journal of Neuroscience, 26, 8609–8621.PubMedGoogle Scholar
  36. Gant, J. C., Thibault, O., Blalock, E. M., Yang, J., Bachstetter, A., Kotick, J., Schauwecker, P. E., Hauser, K.·F., Smith, G. M., Mervis, R., Li, Y. & Barnes, G. N. (2008) Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia (in press). doi: 10.1111/j.1528-1167.2008.01725.x.
  37. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17, 103–111.PubMedGoogle Scholar
  38. Gharani, N., Benayed, R., Mancuso, V., Brzustowicz, L. M., & Millonig, J. H. (2004). Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Molecular Psychiatry, 9, 474–484.PubMedGoogle Scholar
  39. Gillberg, C., & de Souza, L. (2002). Head circumference in autism, Asperger syndrome, and ADHD: A comparative study. Developmental Medicine and Child Neurology, 44, 296–300.PubMedGoogle Scholar
  40. Goffin, A., Hoefsloot, L. H., Bosgoed, E., Swillen, A., & Fryns, J. P. (2001). PTEN mutation in a family with Cowden syndrome and autism. American Journal of Medical Genetics, 105, 521–524.PubMedGoogle Scholar
  41. Hardan, A. Y., Minshew, N. J., & Keshavan, M. S. (2000). Corpus callosum size in autism. Neurology, 55, 1033–1036.PubMedGoogle Scholar
  42. Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., & Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59, 1–6.PubMedGoogle Scholar
  43. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.PubMedGoogle Scholar
  44. Hendry, J., DeVito, T., Gelman, N., Densmore, M., Rajakumar, N., Pavlosky, W., et al. (2006). White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage, 29, 1049–1057.PubMedGoogle Scholar
  45. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192.PubMedGoogle Scholar
  46. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.PubMedGoogle Scholar
  47. Hodapp, R. M., & Urbano, R. C. (2007). Adult siblings of individuals with Down syndrome versus with autism: Findings from a large-scale US survey. Journal of Intellectual Disability Research, 51, 1018–1029.PubMedGoogle Scholar
  48. Huffman, K. J., Garel, S., & Rubenstein, J. L. (2004). Fgf8 regulates the development of intra-neocortical projections. Journal of Neuroscience, 24, 8917–8923.PubMedGoogle Scholar
  49. Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.PubMedGoogle Scholar
  50. Jones, E. G., & Peters, A. (1984). Cerebral cortex. Cellular components of the cerebral cortex. New York: Plenum.Google Scholar
  51. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  52. Korada, S., Zheng, W., Basilico, C., Schwartz, M. L., & Vaccarino, F. M. (2002). Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. Journal of Neuroscience, 22, 863–875.PubMedGoogle Scholar
  53. Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.PubMedGoogle Scholar
  54. Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7, 883–890.PubMedGoogle Scholar
  55. Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388.PubMedGoogle Scholar
  56. Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., et al. (2006). Head circumference and height in autism: A study by the Collaborative Program of Excellence in Autism. American Journal of Medical Genetics. Part A, 140, 2257–2274.PubMedGoogle Scholar
  57. Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 282–290.PubMedGoogle Scholar
  58. Laumonnier, F., Bonnet-Brilhault, F., Gomot, M., Blanc, R., David, A., Moizard, M. P., et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American Journal of Human Genetics, 74, 552–557.PubMedGoogle Scholar
  59. Lavdas, A. A., Grigoriou, M., Pachnis, V., & Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience, 19, 7881–7888.PubMedGoogle Scholar
  60. Letinic, K., Zoncu, R., & Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature, 417, 645–649.PubMedGoogle Scholar
  61. Levitt, P., Cooper, M. L., & Rakic, P. (1981). Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. Journal of Neuroscience, 1, 27–39.PubMedGoogle Scholar
  62. Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., & Starkstein, S. E. (1999). An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 11, 470–474.PubMedGoogle Scholar
  63. Marshall, C. A., & Goldman, J. E. (2002). Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. Journal of Neuroscience, 22, 9821–9830.PubMedGoogle Scholar
  64. Marshall, C. A., Suzuki, S. O., & Goldman, J. E. (2003). Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going? Glia, 43, 52–61.PubMedGoogle Scholar
  65. McCaffery, P., & Deutsch, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56.PubMedGoogle Scholar
  66. Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nature Genetics, 18, 136–141.PubMedGoogle Scholar
  67. Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95, 339–350.PubMedGoogle Scholar
  68. Mountcastle, V. B. (1997). The columnar organization of the neocortex. [Review]. Brain, 120, 701–722.PubMedGoogle Scholar
  69. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.PubMedGoogle Scholar
  70. Noctor, S. C., Martinez-Cerdeno, V., & Kriegstein, A. R. (2007). Contribution of intermediate progenitor cells to cortical histogenesis. Archives of Neurology, 64, 639–642.PubMedGoogle Scholar
  71. Ohkubo, Y., Uchida, A. O., Shin, D., Partanen, J., & Vaccarino, F. M. (2004). Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. Journal of Neuroscience, 24, 6057–6069.PubMedGoogle Scholar
  72. Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., et al. (2003). Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. Journal of Biological Chemistry, 278, 34226–34236.PubMedGoogle Scholar
  73. Ong, S. H., Hadari, Y. R., Gotoh, N., Guy, G. R., Schlessinger, J., & Lax, I. (2001). Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 6074–6079.PubMedGoogle Scholar
  74. Ortega, S., Ittmann, M., Tsang, S. H., Ehrich, M., & Basilico, C. (1998). Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 5672–5677.PubMedGoogle Scholar
  75. Palmen, S. J., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Durston, S., Lahuis, B. E., et al. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35, 561–570.PubMedGoogle Scholar
  76. Palmen, S. J., & van Engeland, H. (2004). Review on structural neuroimaging findings in autism. Journal of Neural Transmission, 111, 903–929.PubMedGoogle Scholar
  77. Palmen, S. J., van Engeland, H., Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572–2583.PubMedGoogle Scholar
  78. Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29, 349–358.PubMedGoogle Scholar
  79. Peters, A., Cifuentes, J. M., & Sethares, C. (1997). The organization of pyramidal cells in area 18 of the rhesus monkey. Cerebral Cortex, 7, 405–421.PubMedGoogle Scholar
  80. Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.PubMedCrossRefGoogle Scholar
  81. Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 1145–1149.PubMedGoogle Scholar
  82. Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154, 1051–1056.PubMedGoogle Scholar
  83. Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J. F., Schwartz, M. L., & Vaccarino, F. M. (2000). Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. Journal of Neuroscience, 20, 5012–5023.PubMedGoogle Scholar
  84. Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial glia. Cerebral Cortex, 13, 541–549.PubMedGoogle Scholar
  85. Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9.PubMedGoogle Scholar
  86. Ringo, J. L. (1991). Neuronal interconnections as a function of brain size. Brain, Behavior and Evolution, 38, 1–6.PubMedGoogle Scholar
  87. Samaco, R. C., Hogart, A., & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14, 483–492.PubMedGoogle Scholar
  88. Santangelo, S. L., & Tsatsanis, K. (2005). What is known about autism: Genes, brain, and behavior. American Journal of Pharmacogenomics, 5, 71–92.PubMedGoogle Scholar
  89. Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V.·S., Shah, N. M., Rubenstein, J. L. & Mucke, L. (2007) Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behavior, 7, 344–354.Google Scholar
  90. Sherr, E. H. (2003). The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): One gene leads to many phenotypes. Current Opinion in Pediatrics, 15, 567–571.PubMedGoogle Scholar
  91. Schultz, R.T., Win, L., Jackowski, A., Klin, A., Staib, L., Papademetris, X., Babitz, T., Carter, E., Klaiman, C., Feiler, A. & Volkmar, F. (2005) Brain Morphology in Autism Spectrum Disorders: An MRI Study. In: International Meeting for Autism Research (IMFAR). Boston, MA.Google Scholar
  92. Shin, D. M., Korada, S., Raballo, R., Shashikant, C. S., Simeone, A., Taylor, J. R., et al. (2004). Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. Journal of Neuroscience, 24, 2247–2258.PubMedGoogle Scholar
  93. Smith, K. M., Ohkubo, Y., Maragnoli, M. E., Rasin, M. R., Schwartz, M. L., Sestan, N., et al. (2006). Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience, 9, 787–797.PubMedGoogle Scholar
  94. Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30, 405–416.PubMedGoogle Scholar
  95. Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328.PubMedGoogle Scholar
  96. Tao, Y., Black, I. B., & DiCicco-Bloom, E. (1996). Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). Journal of Comparative Neurology, 376, 653–663.PubMedGoogle Scholar
  97. Tanaka, A., Kamiakito, T., Hakamata, Y., Fujii, A., Kuriki, K., & Fukayama, M. (2001). Extensive neuronal localization and neurotrophic function of fibroblast growth factor 8 in the nervous system. Brain Research, 912, 105–115.PubMedGoogle Scholar
  98. Trikalinos, T. A., Karvouni, A., Zintzaras, E., Ylisaukko-oja, T., Peltonen, L., Jarvela, I., et al. (2006). A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Molecular Psychiatry, 11, 29–36.PubMedGoogle Scholar
  99. Turner, G., Partington, M., Kerr, B., Mangelsdorf, M., & Gecz, J. (2002). Variable expression of mental retardation, autism, seizures, and dystonic hand movements in two families with an identical ARX gene mutation. American Journal of Medical Genetics, 112, 405–411.PubMedGoogle Scholar
  100. Vaccarino, F. M., Fagel, D. M., Ganat, Y., Maragnoli, M. E., Ment, L. R., Ohkubo, Y., et al. (2007). Astroglial cells in development, regeneration, and repair. Neuroscientist, 13, 173–185.PubMedGoogle Scholar
  101. Vaccarino, F. M., Schwartz, M. L., Hartigan, D., & Leckman, J. F. (1995). Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cerebral Cortex, 5, 64–78.PubMedGoogle Scholar
  102. Vaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., et al. (1999b). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience, 2, 246–253.PubMedGoogle Scholar
  103. Vaccarino, F. M., Schwartz, M. L., Raballo, R., Rhee, J., & Lyn-Cook, R. (1999a). Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Current Topics in Developmental Biology, 46, 179–200.PubMedGoogle Scholar
  104. Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 45, 135–170.PubMedGoogle Scholar
  105. Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.PubMedGoogle Scholar
  106. Wilke, T. A., Gubbels, S., Schwartz, J., & Richman, J. M. (1997). Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Developmental Dynamics, 210, 41–52.PubMedGoogle Scholar
  107. Woodhouse, W., Bailey, A., Rutter, M., Bolton, P., Baird, G., & Le Couteur, A. (1996). Head circumference in autism and other pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 37, 665–671.PubMedGoogle Scholar
  108. Wuechner, C., Nordqvist, A. C., Winterpacht, A., Zabel, B., & Schalling, M. (1996). Developmental expression of splicing variants of fibroblast growth factor receptor 3 (FGFR3) in mouse. International Journal of Developmental Biology, 40, 1185–1188.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Flora M. Vaccarino
    • 1
    • 2
    Email author
  • Elena L. Grigorenko
    • 1
    • 3
  • Karen Müller Smith
    • 1
  • Hanna E. Stevens
    • 1
  1. 1.Child Study CenterYale University School of MedicineNew HavenUSA
  2. 2.Department of NeurobiologyYale University School of MedicineNew HavenUSA
  3. 3.Department of Psychology and Department of Epidemiology and Public HealthYale UniversityNew HavenUSA

Personalised recommendations