Journal of Autism and Developmental Disorders

, Volume 38, Issue 9, pp 1751–1757

Characterization of Potential Outcome Measures for Future Clinical Trials in Fragile X Syndrome

  • Elizabeth Berry-Kravis
  • Allison Sumis
  • Ok-Kyung Kim
  • Rebecca Lara
  • Joanne Wuu
Original Paper

Abstract

Clinical trials targeting recently elucidated synaptic defects in fragile X syndrome (FXS) will require outcome measures capable of assessing short-term changes in cognitive functioning. Potentially useful measures for FXS were evaluated here in a test–retest setting in males and females with FXS (N = 46). Good reproducibility, determined by an interclass correlation (ICC) or weighted kappa (κ) of 0.7–0.9 was seen for RBANS List and Story Memory, NEPSY Tower, Woodcock–Johnson Spatial Relations and the commissions score from the Carolina Fragile X Project Continuous Performance Test (CPT). This study demonstrates the feasibility of generating test profiles containing reliability data, ability levels required for test performance, and refusal rates to assist with choice of outcome measures in FXS and other cohorts with cognitive disability.

Keywords

Fragile X syndrome Clinical trials Outcome measures FMR1 

References

  1. Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24, 2648–2655.PubMedCrossRefGoogle Scholar
  2. Aschrafi, A., Cunningham, B. A., Edelman, G. M., & Vanderklish, P. W. (2005). The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proceedings of the National Academy of Science USA, 102, 2180–2185.CrossRefGoogle Scholar
  3. Bagni, C., & Greenough, W. T. (2005). From mRNP trafficking to spine dysmorphogenesis: The roots of fragile X syndrome. Nature Reviews Neuroscience, 6, 376–387.PubMedCrossRefGoogle Scholar
  4. Bear, M. F. (2005). Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain and Behavior, 4, 393–398.CrossRefGoogle Scholar
  5. Bear, M. F., Huber, K. M., & Warren, S. T., (2004). The mGluR theory of fragile X mental retardation. Trends in Neuroscience, 27, 370–377.CrossRefGoogle Scholar
  6. Berry-Kravis, E., Grossman, A. W., Crnic, L. S., & Greenough W. T., (2002). Fragile X syndrome. Current Pediatrics, 2, 316–324.CrossRefGoogle Scholar
  7. Berry-Kravis, E., Krause, S. E., Block, S., Guter, S., Wuu, J., Leurgans, S., et al. (2006). Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: A controlled trial. Journal of Child and Adolescent Psychopharmacology, 16, 525–540.PubMedCrossRefGoogle Scholar
  8. Boutet, I. (2005a). Novel behavioral tests to evaluate treatment outcome in fragile X syndrome. Presented at: Translational Approaches to Fragile X Syndrome: Turning Basic Research Findngs into Therapeutic Targets. Banbury Center, Cold Spring Harbor, NY.Google Scholar
  9. Boutet, I., Ryan, M., Kulaga, V., McShane, C., Christie, L. A., Freedman, M., et al. (2005b). Age-associated cognitive deficits in humans and dogs: A comparative neuropsychological approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 433–441.PubMedCrossRefGoogle Scholar
  10. Chuang, S.-C., Zhao, W., Bauschwitz, R., Yan, Q., Bianchi, R., & Wong, R. K. S. (2005). Prolonged epileptiform discharged induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. Journal of Neuroscience, 25(35), 8048–8055.PubMedCrossRefGoogle Scholar
  11. Devys, D., Lutz, Y., Rouyer, N., Belloc, J.-P., & Mandel, J.-L. (1993). The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nature Genetics, 4, 335–340.PubMedCrossRefGoogle Scholar
  12. Gabel, L. A., Won, S., Kawai, H., McKinney, M., Tartakoff, A. M., & Fallon, J. R. (2004). Visual experience regulates transient expression and dendritic localization of fragile X mental retardation protein. Journal of Neuroscience, 24, 10578–10583.CrossRefGoogle Scholar
  13. Grossman, A. W., Aldridge, G. M., Weiler, I. J., & Greenough, W. T. (2006). Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. Journal of Neuroscience, 26, 7151–7155.PubMedCrossRefGoogle Scholar
  14. Huber, K. M., Gallagher. S. M., Warren, S. T., & Bear, M. F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceedings of the National Academy of Science USA, 99, 7746–50.CrossRefGoogle Scholar
  15. Irwin, S. A., Christmon, C. A., Grossman, A. W., Galvez, R., Kimm H. S., DeGrush, B. J., et al. (2005). Fragile X mental retardation protein levels increase following complex environment exposure in rat brain regions undergoing active synaptogenesis. Neurobiolgy of Learning and Memory, 83, 180–187.CrossRefGoogle Scholar
  16. Irwin, S. A., Idupulapati, M., Gilbert, M. E., Harris, J. B., Chakravarti, A. B., Rogers, E. J., et al. (2002). Dendritic spine and dendritic field characteristics of later V pyramidal neurons in the visual cortex of fragile X-knockout mice. American Journal of Medical Genetics, 111, 140–146.PubMedCrossRefGoogle Scholar
  17. Johnson-Glenberg, M. C. (2004). Patterns of memory in males with fragile X syndrome. 3rd Annual NICHD Fragile X Investigators’ Meeting. Washington, DC.Google Scholar
  18. Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY: A developmental neuropsychological assessment. San Antonio, TX: The Psychological Corporation, Harcourt Brace and Company.Google Scholar
  19. Li, J., Pelletier, M. R., Velazquez, J.-L. P., & Carlen, P. L. (2002). Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Molecular and Cellular Neuroscience, 19, 138–151.PubMedCrossRefGoogle Scholar
  20. McBride, S., Choi, C. H., Wang, Y., Leibelt, D., Braunstein, E., Ferreiro, D., et al. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a model of fragile X syndrome. Neuron, 45, 753–764.PubMedCrossRefGoogle Scholar
  21. McCracken, J. T., McGough, J., Shah, B., Cronin, P., Hang, D., Aman, M. G., et al. (2002). Risperidone in children with autism and serious behavioral problems. New England Journal of Medicine, 347, 314–321.PubMedCrossRefGoogle Scholar
  22. Randolph, C. (1998). Repeatable battery for the assessment of neuropsychological status (RBANS). San Antonio, TX: The Psychological Corporation, Harcourt Brace and Company.Google Scholar
  23. Sullivan, K., Hatton, D. D., Hammer, J., Sideris, J., Hooper, S., Ornstein, P. A., et al. (2007). Sustained attention and response inhibition in boys with fragile X syndrome: Measures of continuous performance. American Journal of Medical Genetics, 144, 517–532.Google Scholar
  24. Turner, G., Webb, T., Wake, S., & Robinson, H. (1996). Prevalence of fragile X syndrome. American Journal of Medical Genetics, 64, 196–197.PubMedCrossRefGoogle Scholar
  25. Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.PubMedCrossRefGoogle Scholar
  26. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment.Google Scholar
  27. Weiler, I. J., Spangler, C. C., Klintsova, A. Y., Grossman, A. W., Kim, S. H., Bertaina-Anglade, V., et al. (2004). Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proceedings of the National Academy of Science USA, 101, 17329–17330.CrossRefGoogle Scholar
  28. Woodcock, R. W., & Johnson, M. B. (1990). Woodcock–Johnson psycho-educational battery—revised. Allen, TX: DLM Teaching Resources.Google Scholar
  29. Yan, Q. J., Rammal, M., Tranfaglia, M., & Baucgwitz, R. P. (2005). Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology, 49, 1053–1066.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Elizabeth Berry-Kravis
    • 1
    • 2
    • 3
  • Allison Sumis
    • 1
    • 4
  • Ok-Kyung Kim
    • 5
  • Rebecca Lara
    • 1
    • 6
  • Joanne Wuu
    • 2
    • 7
  1. 1.Department of PediatricsRush University Medical CenterChicagoUSA
  2. 2.Department of Neurological SciencesRush University Medical CenterChicagoUSA
  3. 3.Department of BiochemistryRush University Medical CenterChicagoUSA
  4. 4.Department of Molecular and Cellular OncologyGeorgetownUSA
  5. 5.Rush University School of MedicineChicagoUSA
  6. 6.Pritzer School of MedicineChicago UniversityChicagoUSA
  7. 7.Department of NeurologyEmory UniversityAtlantaUSA

Personalised recommendations