Brief Report: Enhanced Picture Naming in Autism

  • Matthew Walenski
  • Stewart H. Mostofsky
  • Jennifer C. Gidley-Larson
  • Michael T. Ullman
Brief Report


Language and communication deficits are key diagnostic criteria for autism. However, not all aspects of language are equally affected. Here we present evidence of enhanced performance of a critical aspect of language—word processing—in children with autism. The results have implications for explanatory theories of autism and language, and for the development of therapeutic approaches.


Autism Language Memory Sex difference 



Support was provided by the National Institutes of Health, the National Alliance for Autism Research, and the Mabel Flory Trust.


  1. Ben Shalom, D. (2003). Memory in autism: Review and synthesis. Cortex, 39(4–5), 1129–1138.PubMedCrossRefGoogle Scholar
  2. Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted text. Paper presented at the Second Conference on Applied Natural Language Processing, Austin, TX.Google Scholar
  3. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A. et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269.PubMedCrossRefGoogle Scholar
  4. Francis, N., & Kucera, H. (1982). Frequency analysis of English usage: Lexicon and grammar. Boston, MA: Houghton Mifflin.Google Scholar
  5. Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6(2), 78–84.PubMedCrossRefGoogle Scholar
  6. Frith, U., & Happé, F. (1994). Autism: Beyond “theory of mind”. Cognition, 50, 115–132.PubMedCrossRefGoogle Scholar
  7. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F. et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23(17), 6690–6694.PubMedGoogle Scholar
  8. Indefrey, P., & Levelt, W. J. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144.PubMedCrossRefGoogle Scholar
  9. Kessler, B., Treiman, R., & Mullennix, J. (2002). Phonetic biases in voice key response time measurements. Journal of Memory and Language, 47, 145–171.CrossRefGoogle Scholar
  10. Kjelgaard, M. M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: Implications for genetic subgroups. Language and Cognitive Processes, 16(2), 287–308.PubMedCrossRefGoogle Scholar
  11. Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1–38; discussion 38–75.PubMedGoogle Scholar
  12. Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Science, 98(23), 13464–13471.CrossRefGoogle Scholar
  13. Lord, C., Risi, S., Lambrecht, L., Cook Jr., E. H., Leventhal, B. L., DiLavore, P. C. et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRefGoogle Scholar
  14. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRefGoogle Scholar
  15. Lord, C., & Spence, S. J. (2006). Autism spectrum disorders: Phenotype and diagnosis. In S. O. Moldin & J. L. R. Rubenstein (Eds.), Understanding autism: From basic neuroscience to treatment (pp. 1–23). Boca Raton, FL: CRC Press.Google Scholar
  16. Mostofsky, S. H., Goldberg, M. C., Landa, R. J., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. Journal of the International Neuropsychological Society, 6(7), 752–759.PubMedCrossRefGoogle Scholar
  17. Müller, R. A., Behen, M. E., Rothermel, R. D., Chugani, D. C., Muzik, O., Mangner, T. J. et al. (1999). Brain mapping of language and auditory perception in high-functioning autistic adults: A PET study. Journal of Autism and Developmental Disorders, 29(1), 19–31.PubMedCrossRefGoogle Scholar
  18. Murphy, D. D., Cole, N. B., & Segal, M. (1998). Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proceedings of the National Academy of Sciences, USA, 95, 11412–11417.CrossRefGoogle Scholar
  19. Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E. et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24(45), 10099–10102.PubMedCrossRefGoogle Scholar
  20. Reich, W., Welner, Z., & Herjanic, B. (1997). Diagnostic interview for children and adolescents-IV (DICA-IV). Toronto: Multi-Health Systems.Google Scholar
  21. Scharfman, H. E., & MacLusky, N. J. (2005). Similarities between actions of estrogen and BDNF in the hippocampus: Coincidence or clue? Trends in Neuroscience, 28(2), 79–85.CrossRefGoogle Scholar
  22. Simpkins, J. W., Green, P. S., Gridley, K. E., Singh, M., de Fiebre, N. C., & Rajakumar, G. (1997). Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease. American Journal of Medicine, 103(3A), 19S–25S.PubMedCrossRefGoogle Scholar
  23. Treffert, D. A., & Christensen, D. D. (2005). Inside the mind of a savant. Scientific American, 293(6), 108–113.PubMedCrossRefGoogle Scholar
  24. Tsai, S.-J. (2005). Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Medical Hypotheses, 65(1), 79–82.PubMedCrossRefGoogle Scholar
  25. Ullman, M. T. (1999). Acceptability ratings of regular and irregular past tense forms: Evidence for a dual-system model of language from word frequency and phonological neighbourhood effects. Language and Cognitive Processes, 14(1), 47–67.CrossRefGoogle Scholar
  26. Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews Neuroscience, 2, 717–726.PubMedCrossRefGoogle Scholar
  27. Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92(1–2), 231–270.PubMedCrossRefGoogle Scholar
  28. Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J. et al. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9(2), 266–276.CrossRefGoogle Scholar
  29. Ullman, M. T., Miranda, R. A., & Travers, M. L. (2007). Sex differences in the neurocognition of language. In J. B. Becker, K. J. Berkley, N. Geary, E. Hampson, J. Herman & E. Young (Eds.), Sex on the brain: From genes to behavior. NY, NY: Oxford University Press.Google Scholar
  30. Walenski, M., Tager-Flusberg, H., & Ullman, M. T. (2006). Language in autism. In S. O. Moldin & J. L. R. Rubenstein (Eds.), Understanding autism: From basic neuroscience to treatment (pp. 175–203). Boca Raton, FL: Taylor and Francis Books.Google Scholar
  31. Woolley, C. S. (1999). Effects of estrogen in the CNS. Current Opinion in Neurobiology, 9(3), 349–354.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Matthew Walenski
    • 1
  • Stewart H. Mostofsky
    • 2
    • 3
    • 4
  • Jennifer C. Gidley-Larson
    • 2
  • Michael T. Ullman
    • 1
  1. 1.Brain and Language Laboratory, Department of NeuroscienceGeorgetown UniversityWashingtonUSA
  2. 2.Kennedy Krieger InstituteBaltimoreUSA
  3. 3.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of PsychiatryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations