Journal of Autism and Developmental Disorders

, Volume 38, Issue 7, pp 1201–1210 | Cite as

Comparison of Form and Motion Coherence Processing in Autistic Spectrum Disorders and Dyslexia

  • Stella Tsermentseli
  • Justin M. O’Brien
  • Janine V. Spencer
Original Paper

Abstract

A large body of research has reported visual perception deficits in both people with dyslexia and autistic spectrum disorders. In this study, we compared form and motion coherence detection between a group of adults with high-functioning autism, a group with Asperger’s disorder, a group with dyslexia, and a matched control group. It was found that motion detection was intact in dyslexia and Asperger. Individuals with high-functioning autism showed a general impaired ability to detect coherent form and motion. Participants with Asperger’s syndrome showed lower form coherence thresholds than the dyslexic and normally developing adults. The results are discussed with respect to the involvement of the dorsal and ventral pathways in developmental disorders.

Keywords

High-functioning autism Asperger’s disorder Dyslexia Visual system Motion processing Form processing 

Notes

Acknowledgment

The authors are very thankful to the individuals and colleges who participated in this study.

References

  1. Adelson E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, [A], 2, 284–299.Google Scholar
  2. American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th edn.). Washington: Author.Google Scholar
  3. Atkinson, J. (2000). The developing visual brain. Oxford: Oxford University Press.Google Scholar
  4. Atkinson, J., Braddick, O., Anker, S., Curran, W., Andrew, R., & Braddick, F. (2003). Neurobiological models of visuo-spatial cognition in young Williams’s syndrome children: Measures of dorsal stream and frontal function. Developmental Neuropsychology, 23, 139–172.PubMedCrossRefGoogle Scholar
  5. Bedell, H. E., & Johnson, C. A. (1995). The effect of flicker on foveal and peripheral thresholds for oscillatory motion. Vision Research, 35, 2179–2189.PubMedCrossRefGoogle Scholar
  6. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128, 2430–2441.PubMedCrossRefGoogle Scholar
  7. Biscaldi, M., Fischer, B., & Hartnegg, K. (2000). Voluntary saccadic control in dyslexia. Perception, 29, 509–521.PubMedCrossRefGoogle Scholar
  8. Braddick, O., Atkinson, J., & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and “dorsal stream vulnerability”. Neuropsychologia, 13, 1769–1784.CrossRefGoogle Scholar
  9. Braddick, O. J., O’Brien, J. M. D., Wattam-Bell, J., Atkinson, J., & Turner, R. (2000). Form and motion coherence activate independent, but not dorsal/ventral segregated networks in the human brain. Current Biology, 10, 731–734.PubMedCrossRefGoogle Scholar
  10. Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12, 4745–4765.PubMedGoogle Scholar
  11. Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1993). Responses of neurons in macaque MT to stochastic motion signals. Visual Neuroscience, 10, 1157–1169.PubMedGoogle Scholar
  12. Chen, Y., McPeek, R. M., Intriligator, J., Holzman, P. S., & Nakayama, K. (1998). Smooth pursuit to a movement flow and associated perceptual judgments. In W. Becker et al. (Eds.), Current oculomotor research: Physiological and psychological aspects. New York: Plenum.Google Scholar
  13. Davis, R. A., Bockbrader, M. A., Murphy, R. R., Hetrick, W. P., & O’Donnell, B. F. (2006). Subjective perceptual distortions and visual dysfunction in children with autism. Journal of Autism and Developmental Disorders, 36, 199–210.PubMedCrossRefGoogle Scholar
  14. Eden, G. F., Stein, J. F, Wood, H. M., & Wood, F. B. (1994). Differences in eye movements and reading problems in dyslexic and normal children. Vision Research, 34, 1345–1358.PubMedCrossRefGoogle Scholar
  15. Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: Evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138, 46–53.CrossRefGoogle Scholar
  16. Giaschi, D., Regan, D., Kraft, S., & Hong, X. H. (1992). Defective processing of motion in the fellow eye of unilateral amblyopes. Investigative Ophthalmology and Visual Science, 33, 2483–2489.PubMedGoogle Scholar
  17. Gillberg C., & Gillberg, C. (1989). Asperger syndrome: Some epidemiological considerations: A research note. Journal of Child Psychology and Psychiatry, 30, 631–638.PubMedCrossRefGoogle Scholar
  18. Glass, L. (1969). Moire effect from random dots. Nature, 223, 578–580.PubMedCrossRefGoogle Scholar
  19. Hansen, P. C., Stein, J. F., Orde, S. R., Winter, J. L., & Talcott, J. B. (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? NeuroReport 12, 1527–1530.PubMedCrossRefGoogle Scholar
  20. Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? Journal of Child Psychology and Psychiatry, 38, 527–534.PubMedCrossRefGoogle Scholar
  21. Klin, A., Volkmar, F. R., Sparrow, S. S., Cicchetti, D. V., & Rourke, B. P. (1995). Validity and neuropsychological characterization of Asperger syndrome: Convergence with Nonverbal Learning Disabilities syndrome. Journal of Child Psychology and Psychiatry, 36, 1127–1140.PubMedCrossRefGoogle Scholar
  22. Kogan, C. S., Bertone, A., Cornish, K., Boutet, I., Der Kaloustian, V. M., Andermann, E., Faubert, J., & Chaudhuri A. (2004). Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome. Neurology, 63, 1634–1639.PubMedGoogle Scholar
  23. Legge, G. E, & Campbell, F. W. (1981). Displacement detection in human vision. Vision Research, 21, 205–213.PubMedCrossRefGoogle Scholar
  24. Livingstone, M. S., &. Hubel, D. H. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–749.PubMedCrossRefGoogle Scholar
  25. Lord, C., Rutter, M., DiLavore, P., & Risi, S. (1999). Autism diagnostic observation schedule. Los Angeles: Western Psychological Services.Google Scholar
  26. Lotspeich, L. J., Kwon, H., Schumann, C. M., Fryer, S. L., Goodlin-Jones, B. L., Buonocore, M. H., Lammers, C. R., Amaral, D. G., & Reiss, A. L. (2004). Investigation of neuroanatomical differences between autism and Asperger syndrome. Archives of General Psychiatry, 61, 291–298.PubMedCrossRefGoogle Scholar
  27. Macintosh, K. E., & Dissanayake, C. (2004). Annotation: The similarities and differences between autistic disorder and Asperger’s disorder: A review of the empirical evidence. Journal of Child Psychology and Psychiatry, 45, 421–434.PubMedCrossRefGoogle Scholar
  28. Mann, T. A., & Walker, P. (2003). Autism and a deficit in broadening the spread of visual attention. Journal of Child Psychology and Psychiatry, 44, 274–284.PubMedCrossRefGoogle Scholar
  29. Mazefsky, C. A., & Oswald, D. P. (2006). The discriminative ability and diagnostic utility of the ADOS-G, ADI-R, and GARS for children in a clinical setting. Autism, 11, 553–549.Google Scholar
  30. McKendrick, A. M., Badcock, D. R., & Gurgone, M. (2006). Vernier acuity is normal in migraine, whereas global form and global motion perception are not. Investigative Ophthalmology and Visual Science, 47, 3213–3219.PubMedCrossRefGoogle Scholar
  31. Merigan, W. H. (1989). Chromatic and achromatic vision of macaques: Role of the P pathway. Journal of Neuroscience, 9, 776–783.PubMedGoogle Scholar
  32. Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? In W. M. Cowan, E. M. Shooter, C. F. Stevens, & R. F. Thompson (Eds.), Ann. Rev. Neuroscience. Annual Reviews, Palo Alto, CA, pp. 369–402.Google Scholar
  33. Milne, E., Swettenham, J., Hansen, P. C., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43, 255–263.PubMedCrossRefGoogle Scholar
  34. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford Psychology Series.Google Scholar
  35. Nakayama, K., & Tyler, C. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Research, 21, 427–433.PubMedCrossRefGoogle Scholar
  36. Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 2201–2211.PubMedGoogle Scholar
  37. Newsome, W. T., Wurtz, R. H., & Komatsu, H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology, 60, 604–620.PubMedGoogle Scholar
  38. O’Donell, B. F., Swearer, J. M., Smith, L. T., Nestor, P. G., Shenton, M. E., & McCarley, R. W. (1996). Selective deficits in visual perception and recognition in schizophrenia. American Journal of Psychiatry, 153, 687–692.Google Scholar
  39. Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience, 21, 227–277.PubMedCrossRefGoogle Scholar
  40. Pavlidis, G. T. (1981). Do eye movements hold the key to dyslexia? Neuropsychologia, 19, 57–64.PubMedCrossRefGoogle Scholar
  41. Plaisted, K. C., Swettenham, J., & Rees, L. (1999). Children with autism show local precedence in a divided attention task and global precedence in a selective attention task. Journal of Child Psychology and Psychiatry, 40, 733–742.PubMedCrossRefGoogle Scholar
  42. Ramus, F. (2003) Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212–218.PubMedCrossRefGoogle Scholar
  43. Rees, G., Friston, K., & Koch, C. (2000). A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience, 3, 716–723.PubMedCrossRefGoogle Scholar
  44. Regan, D., & Maxner, C. (1986). Orientation-dependent loss of contrast sensitivity for pattern and flicker sensitivity in multiple sclerosis. Clinical Vision Sciences, 1, 1–23.Google Scholar
  45. Rinehart, N., Bradshaw, J., Moss, S., Brereton, A., & Tonge, B. (2000). Atypical interference of local detail on global processing in high functioning autism and Asperger’s disorder. Journal of Child Psychology and Psychiatry, 41, 769–778.PubMedCrossRefGoogle Scholar
  46. Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2001). Movement preparation in high-functioning autism and Asperger’s disorder: A serial choice-reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31, 79–88.PubMedCrossRefGoogle Scholar
  47. Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2002). A clinical and neurobehavioural comparison of high-functioning autism and Asperger’s disorder. Australian and New Zealand Journal of Psychiatry, 36, 762–770.PubMedCrossRefGoogle Scholar
  48. Rizzo, M., & Nawrot, M. (1998). Perception of movement and shape in Alzheimer’s disease. Brain, 121, 2259–2270.PubMedCrossRefGoogle Scholar
  49. Rosenhall, U., Johansson, E., & Gillberg, C. (1988). Oculomotor findings in autistic children. Journal of Laryngology and Otology, 102, 435–439.PubMedGoogle Scholar
  50. Rumsey, J. M., & Hamburger, D. (1990). Neuropsychological divergence of high-level autism and severe dyslexia. Journal of Autism and Developmental Disorders, 20, 155–168.PubMedCrossRefGoogle Scholar
  51. Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346, 174–177.PubMedCrossRefGoogle Scholar
  52. Scharre, J. E., & Creedon, M. P. (1992). Assessment of visual function in autistic children. Optometry and Vision Science, 69, 433–439.PubMedCrossRefGoogle Scholar
  53. Shea, V., & Mesibov, G. B. (1985). Brief report: The relationship of learning disabilities and higher-level autism. Journal of Autism and Developmental Disorders, 15, 425–435.PubMedCrossRefGoogle Scholar
  54. Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision research, 40, 111–127.PubMedCrossRefGoogle Scholar
  55. Slaghuis, W. L., & Ryan, J. F. (1999). Spatio-temporal contrast sensitivity, coherent motion, and visible persistence in developmental dyslexia. Vision Research, 39, 651–668.PubMedCrossRefGoogle Scholar
  56. Spencer, J., & O’Brien, J. M. D. (2006). Visual form processing deficits in autism. Perception, 35, 1047–1055.PubMedCrossRefGoogle Scholar
  57. Spencer, J., O’Brien, J. M. D., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Form and motion Coherence in autism: Is there a specific dorsal stream deficit in people with autism? NeuroReport, 11, 2765–2767.PubMedCrossRefGoogle Scholar
  58. Sperling, A. J., Zhong-Lin, L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8, 862–863.PubMedGoogle Scholar
  59. Stuart, G. W., McAnally, K. I., McKay, A., Johnston, M., & Castles, A. (2006). A test of the magnocellular deficit theory of dyslexia in an adult sample. Cognitive Neuropsychology, 23, 1215–1229.CrossRefGoogle Scholar
  60. Szatmari, P., Archer, L., Fisman, S. M., Streiner, D. L., & Wilson, F. (1995). Asperger’s Syndrome and autism: Differences in behavior, cognition, and adaptive functioning. Journal of the American Academy of Child and Adolescent Psychiatry, 34, 1662–1671.PubMedCrossRefGoogle Scholar
  61. Takarae, Y., Minshew, N. J., Luna, B., Krisky, C. M., & Sweeney, J. A. (2004). Pursuit eye movement deficits in autism. Brain, 127, 2584–2594.PubMedCrossRefGoogle Scholar
  62. Talcott, J. B., Hansen, P. C., Assoku, E., & Stein, J. F. (2000). Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia, 38, 935–943.PubMedCrossRefGoogle Scholar
  63. Talcott, J. B., Hansen, P. C., Willis-Owen, C., McKinnell, I. W., Richardson, A. J., & Stein, J. F. (1998). Visual magnocellular impairment in adult developmental dyslexics. Neuroophthalmology, 20, 187–201.CrossRefGoogle Scholar
  64. Tootell, R. G. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T.,Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215–3230.PubMedGoogle Scholar
  65. Ungeleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour. Cambridge: MIT Press.Google Scholar
  66. van der Geest, J. N., Kemner, C., Camfferman, G., Verbaten, M. N., & van Engeland, H. (2001). Eye movements, visual attention, and autism: A saccadic reaction time study using the gap and overlap paradigm. Biological Psychiatry, 50, 614–619.PubMedCrossRefGoogle Scholar
  67. Vidyasagar, T. R. (2004). Neural underpinnings of dyslexia as a disorder of visuo-spatial attention. Clinical and Experimental Optometry, 87, 4–10.PubMedCrossRefGoogle Scholar
  68. Von Karolyi, C., Winner, E., Gray, W., & Sherman, G. F. (2003). Dyslexia linked to talent: Global visual-spatial ability. Brain and Language, 85, 427–431.CrossRefGoogle Scholar
  69. Wechsler, D. (1999). WASI: Wechsler abbreviated scale of intelligence. San Antonio: The Psychological Corporation.Google Scholar
  70. Wertheim, A. H., van Gelder, P., Lautin, A., Peselow, E., & Cohen, N. (1985). High thresholds for movement perception in schizophrenia may indicate abnormal extraneous noise levels of central vestibular activity. Biological Psychiatry, 20, 1197–1210.PubMedCrossRefGoogle Scholar
  71. White, S., Frith, U., Milne, E., Stuart, R., Swettenham, J., & Ramus, F. (2006). A double dissociation between sensorimotor impairments and reading disability: A comparison of autistic and dyslexic children. Cognitive Neuropsychology, 23, 748–761.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stella Tsermentseli
    • 1
  • Justin M. O’Brien
    • 1
    • 2
  • Janine V. Spencer
    • 1
    • 2
  1. 1.Centre for Cognition and NeuroimagingBrunel UniversityUxbridgeUK
  2. 2.Centre for Research in Infant Behaviour, Institute of PsychologyBrunel UniversityUxbridgeUK

Personalised recommendations