Advertisement

Coherent versus Component Motion Perception in Autism Spectrum Disorder

  • Myriam W. G. VandenbrouckeEmail author
  • H. Steven Scholte
  • Herman van Engeland
  • Victor A. F. Lamme
  • Chantal Kemner
Original Paper

Abstract

Research on visual perception in Autism Spectrum Disorder (ASD) tries to reveal the underlying mechanisms of aberrant local and global processing. Global motion perception is one way to study this aspect of ASD. We used plaid motion stimuli, which can be perceived as a coherently moving pattern, requiring feature integration, or as two transparent gratings sliding over each other. If global motion detection is impaired in ASD, this would lead to a decrease of the total time that a coherent pattern is perceived. However, in contrast to other studies in the literature, our results gave no evidence of impaired global motion perception in people with ASD. A reconciliation of the different outcomes is proposed based on spatial frequency processing in ASD.

Keywords

Asperger Integration Synchronization Global Stimulus rivalry 

Notes

Acknowledgments

The work described was supported by an Innovational Research Incentives grant (VIDI-scheme, 402-01-094) of the Netherlands Organization for Scientific Research (NWO) to Chantal Kemner. We would like to thank Maarten van der Smagt for his suggestions on the analysis and interpretation of the data.

References

  1. Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523–525.PubMedCrossRefGoogle Scholar
  2. Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., et al. (2006). Configural processing in autism and its relationship to face processing. Neuropsychologia, 44(1), 110–129.PubMedCrossRefGoogle Scholar
  3. Bertone, A., Mottron, L., Jelenic, P., & Faubert J. (2003). Motion perception in autism: a “complex” issue. J Cogn Neurosci, 15(2), 218–225.PubMedCrossRefGoogle Scholar
  4. Boeschoten, M. A., Kenemans, J. L., Engeland, H., & Kemner, C. (2007). Abnormal spatial frequency processing in high-functioning children with pervasive developmental disorder (PDD). Clin Neurophysiol, 118(9), 2076–2088.PubMedCrossRefGoogle Scholar
  5. Boeschoten, M. A., Kenemans, J. L., van Engeland, H., & Kemner, C. (in press) Face processing in Pervasive developmental disorder (PDD): the roles of expertise and spatial frequency. J Neural Transm.Google Scholar
  6. Brosnan, M. J., Scott, F. J., Fox, S., & Pye, J. (2004). Gestalt processing in autism: failure to process perceptual relationships and the implications for contextual understanding. J Child Psychol Psychiatry, 45(3), 459–469.PubMedCrossRefGoogle Scholar
  7. Castelo-Branco, M., Goebel, R., Neuenschwander, S., & Singer, W. (2000). Neural synchrony correlates with surface segregation rules. Nature, 405(6787), 685–689.PubMedCrossRefGoogle Scholar
  8. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507.PubMedCrossRefGoogle Scholar
  9. De Jonge, M. V., Kemner, C., de Haan, E. H., Coppens, J. E., van den Berg, T. J. T. P., & van Engeland, H. (2007). Visual information processing in high-functioning individuals with autism spectrum disorders and their parents. Neuropsychology, 21(1), 65–73.PubMedCrossRefGoogle Scholar
  10. Del Viva, M. M., Igliozzi, R., Tancredi, R., & Brizzolara, D. (2006). Spatial and motion integration in children with autism. Vision Res, 46(8–9), 1242–1252.PubMedGoogle Scholar
  11. Hammond, P. (1991). On the response of simple and complex cells to random dot patterns: a reply to Skottun, Grosof and De Valois. Vision Res, 31(1), 47–50.PubMedCrossRefGoogle Scholar
  12. Hammond, P., & MacKay, D. M. (1977). Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp Brain Res, 30(2–3), 275–296.PubMedGoogle Scholar
  13. Happe, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord, 36(1), 5–25.PubMedCrossRefGoogle Scholar
  14. Happe, F. G. E. (1996). Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note. J Child Psychol Psychiatry Allied Discip, 37(7), 873–877.CrossRefGoogle Scholar
  15. Huk, A. C., & Heeger, D. J. (2002). Pattern-motion responses in human visual cortex. Nature Neurosci, 5(1), 72–75.PubMedCrossRefGoogle Scholar
  16. Hupe, J. M., & Rubin, N. (2003). The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids. Vision Res, 43(5), 531–548.PubMedCrossRefGoogle Scholar
  17. Keil, A., Elbert, T., Rockstroh, B., & Ray, W. J. (1998). Dynamical aspects of motor and perceptual processes in schizophrenic patients and healthy controls. Schizophr Res, 33(3), 169–178.PubMedCrossRefGoogle Scholar
  18. Lamme, V. A. F. (1995). The neurophysiology of figure ground segregation in primary visual-cortex. J Neurosci, 15(2), 1605–1615.PubMedGoogle Scholar
  19. Lee, S. H., Blake, R., & Heeger, D. J. (2005). Traveling waves of activity in primary visual cortex during binocular rivalry. Nature Neurosci, 8(1), 22–23.PubMedCrossRefGoogle Scholar
  20. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord, 19(2), 185–212.PubMedCrossRefGoogle Scholar
  21. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord, 24(5), 659–685.PubMedCrossRefGoogle Scholar
  22. Miller, S. M., Gynther, B. D., Heslop, K. R., Liu, G. B., Mitchell, P. B., Ngo, T. T., et al. (2003). Slow binocular rivalry in bipolar disorder. Psychol Med, 33(4), 683–692.PubMedCrossRefGoogle Scholar
  23. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. J Child Psychol Psychiatry, 43(2), 255–263.PubMedCrossRefGoogle Scholar
  24. Mottron, L., Burack, J. A., Stauder, J. E. A., & Robaey, P. (1999). Perceptual processing among high-functioning persons with autism. J Child Psychol Psychiatry Allied Discip, 40(2), 203–211.CrossRefGoogle Scholar
  25. Mottron, L., Burack, J. A., Iarocci, G., Belleville, S., & Enns, J. T. (2003). Locally oriented perception with intact global processing among adolescents with high-functioning autism: evidence from multiple paradigms. J Child Psychol Psychiatry, 44(6), 904–913.PubMedCrossRefGoogle Scholar
  26. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord, 36(1), 27–43.PubMedCrossRefGoogle Scholar
  27. Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 1044–1053.PubMedCrossRefGoogle Scholar
  28. Plaisted, K., Saksida, L., Alcantara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception. Philos Trans R Soc Lond B Biol Sci, 358(1430), 375–386.PubMedCrossRefGoogle Scholar
  29. Plaisted, K., Swettenham, J., & Rees, L. (1999). Children with autism show local precedence in a divided attention task and global precedence in a selective attention task. J Child Psychol Psychiatry, 40(5), 733–742.PubMedCrossRefGoogle Scholar
  30. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2000). Atypical interference of local detail on global processing in high-functioning autism and Asperger’s disorder. J Child Psychol Psychiatry Allied Discip, 41(6), 769–778.CrossRefGoogle Scholar
  31. Ropar, D., & Mitchell, P. (2001). Susceptibility to illusions and performance on visuospatial tasks in individuals with autism. J Child Psychol Psychiatry Allied Discip, 42(4), 539–549.CrossRefGoogle Scholar
  32. Seiffert, A. E., Somers, D. C., Dale, A. M., & Tootell, R. B. (2003). Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. Cereb Cortex, 13(4), 340–349.PubMedCrossRefGoogle Scholar
  33. Spencer, J. V., & O’Brien, J. M. D. (2006). Visual form-processing deficits in autism. Perception, 35(8), 1047–1055.PubMedCrossRefGoogle Scholar
  34. Spencer, J., O’Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: evidence for a dorsal stream deficiency. Neuroreport, 11(12), 2765–2767.PubMedCrossRefGoogle Scholar
  35. Stoner, G. R., & Albright, T. D. (1992). Neural correlates of perceptual motion coherence. Nature, 358(6385), 412–414.PubMedCrossRefGoogle Scholar
  36. Thiele, A., & Stoner, G. (2003). Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature, 421(6921), 366–370.PubMedCrossRefGoogle Scholar
  37. Welch, L. (1989). The perception of moving plaids reveals two motion-processing stages. Nature, 337(6209), 734–736.PubMedCrossRefGoogle Scholar
  38. Wickens, T. (2002). Elementary signal detection theory. New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Myriam W. G. Vandenbroucke
    • 1
    • 2
    Email author
  • H. Steven Scholte
    • 2
  • Herman van Engeland
    • 1
  • Victor A. F. Lamme
    • 2
    • 3
  • Chantal Kemner
    • 1
    • 4
  1. 1.Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of NeuroscienceUniversity Medical Centre UtrechtUtrechtThe Netherlands
  2. 2.Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.The Netherlands Institute for Neuroscience (Royal Academy of Arts and Sciences KNAW)AmsterdamThe Netherlands
  4. 4.Department of Neurocognition, Faculty of PsychologyMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations