Journal of Autism and Developmental Disorders

, Volume 38, Issue 3, pp 474–480 | Cite as

Exploratory and Confirmatory Factor Analysis of the Autism Diagnostic Interview-Revised

  • Thomas W. FrazierEmail author
  • Eric A. Youngstrom
  • Cynthia S. Kubu
  • Leslie Sinclair
  • Ali Rezai
Original Paper


The factor structure of the Autism Diagnostic Interview-Revised (ADI-R) algorithm items was examined using exploratory (EFA) and confirmatory factor analyses (CFA) factor methods. The ADI-R was completed for 1,170 youths and adults (ages 2–46). Results of EFAs indicated strong support for two-factor structure, with social communication and stereotyped behavior factors. CFAs computed in a holdout sub-sample indicated roughly equal support for the above described two-factor model and a three factor model separating peer relationships and play from other social and communicative behaviors. Multi-group CFAs suggested that both two and three factor models showed good stability across age, with only slight changes in factor relationships. These findings indicate that the current ADI-R structure be revised to more accurately reflect the relationships between sub-scales.


Autism Autism diagnostic interview-revised Exploratory factor analysis Multi-group confirmatory factor analysis 



We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium and the participating AGRE families. The Autism Genetic Resource Exchange is a program of Cure Autism Now and is supported, in part, by grant MH64547 from the National Institute of Mental Health to Daniel H. Geschwind (PI).


  1. Arbuckle, J. L. (2003). Amos (Version 5.0). Chicago: Smallwaters.Google Scholar
  2. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  3. Byrne, B. M., Shavelson, R. J., & Muthen, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466.CrossRefGoogle Scholar
  4. Byrne, B. N. (2001). Structural equation modeling with AMOS. Rahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  5. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural equation modeling, 9, 233–255.CrossRefGoogle Scholar
  6. Constantino, J. N., Gruber, C. P., Davis, S., Hayes, S., Passanante, N., & Przybeck, T. (2004). The factor structure of autistic traits. Journal of Child Psychology and Psychiatry, 45, 719–726.PubMedCrossRefGoogle Scholar
  7. Cuccaro, M. L., Shao, Y., Grubber, J., Slifer, M., Wolpert, C. M., Donnelly, S. L., Abramson, R. K., Ravan, S. A., Wright, H. H., DeLong, G. R., & Pericak-Vance, M. A. (2003). Factor analysis of restricted and repetitive behaviors in autism using the Autism Diagnostic Interview-R. Child Psychiatry and Human Development, 34, 3–17.PubMedCrossRefGoogle Scholar
  8. Dunn, L. M., & Dunn, L. M. (1997). Examiner’s manual for the peabody picture vocabulary test (3rd ed). Circle Pines, MN: American Guidance Service.Google Scholar
  9. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  10. Geschwind, D. H., Sowinski, J., Lord, C., Iversen, P., Shestack, J., Jones, P., Ducat, L., & Spence, S. (2001). The autism genetic resource exchange: A resource for the study of autism and related neuropsychiatric conditions. American Journal of Human Genetics, 69, 463–466.PubMedCrossRefGoogle Scholar
  11. Glorfeld, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55, 377–393.CrossRefGoogle Scholar
  12. Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: Sage Publications.Google Scholar
  13. Hus, V., Pickles, A., Cook, E. H., Risi, S., & Lord, C. (2007). Using the autism diagnostic interview—Revised to increase the phenotypic homogeneity in genetic studies of autism. Biological Psychiatry, 61, 438–448.PubMedCrossRefGoogle Scholar
  14. Lam, K. S. L., & Aman, M. G. (2007). The repetitive behavior scale-revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37, 855–866.PubMedCrossRefGoogle Scholar
  15. Lecavalier, L., Aman, M. G., Scahill, L., McDougle, C. J., McCracken, J. T., Vitiello, B., Tierney, E., Arnold, L. E., Ghuman, J. K., Loftin, R. L., Cronin, P., Koenig, K., Posey, D. J., Martin, A., Hollway, J., Lee, L. S., & Kau, A. S. M. (2006). Validity of the autism diagnostic interview-revised. American Journal of Mental Retardation, 111, 199–215.PubMedCrossRefGoogle Scholar
  16. Lord, C., Rutter, M., & LeCouteur, A. (1994). ADI-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 569–685.CrossRefGoogle Scholar
  17. Molloy, C. A., Keddache, M., & Martin, L. J. (2005). Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Molecular Psychiatry, 10, 741–746.PubMedCrossRefGoogle Scholar
  18. Raven, J. C. (1956). Coloured progressive matices. Los Angeles, CA: Western Psychological Services.Google Scholar
  19. Rutter, M., Le Couteur, A., & Lord, C. (2003). ADI-R: Autism Diagnostic Interview-Revised. Los Angeles, CA: Western Psychological Services.Google Scholar
  20. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428.CrossRefGoogle Scholar
  21. South, M., Ozonoff, S., & McMahon, W. M. (2005). Repetitive behavior profiles in asperger syndrome and high-functioning autism. Journal of Autism and Developmental Disorders, 35, 145–158.PubMedCrossRefGoogle Scholar
  22. Spence, S. J., Cantor, R. M., Chung, L., Kim, S., Geschwind, D. H., & Alarcon, M. (2006). Stratification based on language-related endophenotypes in autism: Attempt to replicate a reported linkage. American Journal of Medical Genetics, 141B, 591–598.CrossRefGoogle Scholar
  23. Szatmari, P., Merette, C., Bryson, S. E., Thivierge, J., Roy, M., Cayer, M., & Maziade, M. (2002). Quantifying dimensions in autism: a factor-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 467–474.PubMedCrossRefGoogle Scholar
  24. Tadevosyan-Leyfer, O., Dowd, M., Mankoski, R., Winklosky, B., Putnam, S., McGrath, L., Tager-Flusberg, H., & Folstein, S. E. (2003). A principal components analysis of the autism diagnostic interview-revised. Journal of the American Academy of Child and Adolescent Psychiatry, 42, 864–872.PubMedCrossRefGoogle Scholar
  25. Tucker, L. R. (1951). A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Washington, DC: Department of the Army.Google Scholar
  26. van Lang, N. D. J., Boomsma, A., Sytema, S., de Bildt, A. A., Kraijer, D. W., Ketelaars, C., & Minderaa, R. B. (2006). Structural equation analysis of a hypothesized symptom model in the autism spectrum. Journal of Child Psychology and Psychiatry, 47, 37–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thomas W. Frazier
    • 1
    Email author
  • Eric A. Youngstrom
    • 2
  • Cynthia S. Kubu
    • 3
  • Leslie Sinclair
    • 4
  • Ali Rezai
    • 5
  1. 1.Section of Behavioral MedicineChildren’s Hospital for Rehabilitation, The Cleveland ClinicClevelandUSA
  2. 2.Department of PsychologyUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Section of NeuropsychologyThe Cleveland ClinicClevelandUSA
  4. 4.Center for AutismThe Cleveland ClinicClevelandUSA
  5. 5.Center for Neurological RestorationThe Cleveland ClinicClevelandUSA

Personalised recommendations