Journal of Autism and Developmental Disorders

, Volume 38, Issue 1, pp 14–19 | Cite as

The G22A Polymorphism of the ADA Gene and Susceptibility to Autism Spectrum Disorders

  • Joe A. Hettinger
  • Xudong Liu
  • Jeanette Jeltje Anne HoldenEmail author
Original Paper


Inborn errors of purine metabolism have been implicated as a cause for some cases of autism. This hypothesis is supported by the finding of decreased adenosine deaminase (ADA) activity in the sera of some children with autism and reports of an association of the A allele of the ADA G22A (Asp8Asn) polymorphism in individuals with autism of Italian-descent. We tested the ADA G22A polymorphism in 126 North American affected sib-pair families but found no aberrant allele distributions in cases versus controls. Instead, we found an increased transmission of the G allele from fathers to affected children. Our findings suggest that the ADA G22A polymorphism plays a minimal role in susceptibility to autism in North American families.


Autism spectrum disorders Candidate gene Adenosine deaminase Purine metabolism Hyperuricosuria 



The authors are very grateful to the families who participated in this research and we gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium and the participating AGRE families. The Autism Genetic Resource Exchange is a program of Cure Autism Now and is supported, in part, by grant MH64547 from the National Institute of Mental Health to Daniel H. Geschwind (PI).

This work was supported by research grants from the Ontario Mental Health Foundation (to JJAH) and the Canadian Institutes for Health Research (#43820) to the Autism Spectrum Disorders Canadian-American Research Consortium (ASD-CARC) (JJAH, PI;; and a research studentship from the Ontario Mental Health Foundation to JAH. JAH is a trainee with the CIHR/NAAR STIHR Interdisciplinary Inter-Institute Autism Spectrum Disorders Training Program (PI: JJAH).


  1. Battistuzzi, G., Iudicone, P., Santolamazza, P., & Petrucci, R. (1981). Activity of adenosine deaminase allelic forms in intact erythrocytes and in lymphocytes. Annals of Human Genetics, 45, 15–19.PubMedCrossRefGoogle Scholar
  2. Bottini, N., De Luca, D., Saccucci, P., Fiumara, A., Elia, M., Porfirio, M. C., et al. (2001). Autism: evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics, 3, 111–113.PubMedCrossRefGoogle Scholar
  3. Chakrabarti, S., & Fombonne, E. (2005). Pervasive developmental disorders in preschool children: confirmation of high prevalence. American Journal of Psychiatry, 162, 1133–1141.PubMedCrossRefGoogle Scholar
  4. Coleman, M., Landgrebe, M. A., & Landgrebe, A. R. (1976). Purine autism. Hyperuricosuria in autistic children: does this identify a subgroup of autism? In M. Coleman (Eds.), The autistic syndromes (pp. 183–214). New York: Elsevier.Google Scholar
  5. Evans, H. K., Wylie, A. A., Murphy, S. K., & Jirtle, R. L. (2001). The neuronatin gene resides in a ‘micro-imprinted’ domain on human chromosome 20q11.2. Genomics, 77, 99–104.PubMedCrossRefGoogle Scholar
  6. Geschwind, D. H., Sowinski, J., Lord, C., Iversen, P., Shestack, J., Jones, P., et al. (2001). The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. American Journal of Human Genetics, 69, 463–466.PubMedCrossRefGoogle Scholar
  7. Hayward, B. E., Kamiya, M., Strain, L., Moran, V., Campbell, R., Hayashizaki, Y., et al. (1998). The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proceedings of the National Academy of Sciences of the United States of America, 95, 10038–10043.PubMedCrossRefGoogle Scholar
  8. Hirschhorn, R., Yang, D. R., & Israni, A. (1994). An Asp8Asn substitution results in the adenosine deaminase (ADA) genetic polymorphism (ADA 2 allozyme): occurrence on different chromosomal backgrounds and apparent intragenic crossover. Annals of Human Genetics, 58, 1–9.PubMedCrossRefGoogle Scholar
  9. Korvatska, E., Van de Water, J., Anders, T. F., & Gershwin, M. E. (2002). Genetic and immunologic considerations in autism. Neurobiology of Disease, 9, 107–125.PubMedCrossRefGoogle Scholar
  10. Laird, N., Horvath, S., & Xu, X. (2000). Implementing a unified approach to family based tests of association. Genetic Epidemiology, 19(Suppl1), S36–S42.PubMedCrossRefGoogle Scholar
  11. Lander, E. S. (1996). The new genomics: global views of biology. Science, 274, 536–539.PubMedCrossRefGoogle Scholar
  12. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism Diagnostic Observation Schedule: a standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185–212.PubMedCrossRefGoogle Scholar
  13. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.PubMedCrossRefGoogle Scholar
  14. Nowell, M. A., Hackney, D. B., Muraki, A. S., & Coleman, M. (1990). Varied MR appearance of autism: fifty-three pediatric patients having the full autistic syndrome. Magnetic Resonance Imaging, 8, 811–816.PubMedCrossRefGoogle Scholar
  15. Nyhan, W. L., James, J. A., Teberg, A. J., Sweetman, L., & Nelson, L.G. (1969). A new disorder of purine metabolism with behavioral manifestations. The Journal of Pediatrics, 74, 20–27.PubMedCrossRefGoogle Scholar
  16. Page, T., & Coleman, M. (2000). Purine metabolism abnormalities in a hyperuricosuric subclass of autism. Biochimica et Biophysica Acta, 1500, 291–296.PubMedGoogle Scholar
  17. Page, T., & Moseley, C. (2002). Metabolic treatment of hyperuricosuric autism. Progress in Neuro-psychopharmacology and Biological Psychiatry, 26, 397–400.PubMedCrossRefGoogle Scholar
  18. Persico, A. M., Militerni, R., Bravaccio, C., Schneider, C., Melmed, R., Trillo, S., et al. (2000). Adenosine deaminase alleles and autistic disorder: Case-control and family-based association studies. American Journal of Medical Genetics, 96, 784–790.PubMedCrossRefGoogle Scholar
  19. Peters, J., & Beechey, C. (2004). Identification and characterisation of imprinted genes in the mouse. Briefings in Functional Genomics and Proteomics, 2, 320–333.PubMedCrossRefGoogle Scholar
  20. Resta, R., & Thompson, L. F. (1997). SCID: the role of adenosine deaminase deficiency. Immunology Today, 18, 371–374.PubMedCrossRefGoogle Scholar
  21. Robinson, P. D., Schutz, C. K., Macciardi, F., White, B. N., & Holden, J. J. A. (2001). Genetically determined low levels of maternal serum dopamine beta-hydroxylase and the etiology of autism spectrum disorders. American Journal of Medical Genetics, 100, 30–36.PubMedCrossRefGoogle Scholar
  22. Sham, P. C., & Curtis, D. (1995). An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Annals of Human Genetics, 59, 323–336.PubMedCrossRefGoogle Scholar
  23. Singh, V. K., Warren, R., Averett, R., & Ghaziuddin, M. (1997). Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatric Neurology, 17, 88–90.PubMedCrossRefGoogle Scholar
  24. Stathis, S. L., Cowley, D. M., & Broe, D. (2000). Autism and adenylosuccinase deficiency. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 274–275.PubMedCrossRefGoogle Scholar
  25. Stone, R. L., Aimi, J., Barshop, B. A., Jaeken, J., Van den Berghe, G., Zalkin, H., et al. (1992). A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nature Genetics, 1, 59–63.PubMedCrossRefGoogle Scholar
  26. Stubbs, G., Litt, M., Lis, E., Jackson, R., Voth, W., Lindberg, A., et al. (1982). Adenosine deaminase activity decreased in autism. Journal of the American Academy of Child Psychiatry, 21, 71–74.PubMedGoogle Scholar
  27. Trottier, G., Srivastava, L., & Walker, C-D. (1999). Etiology of infantile autism: a review of recent advances in genetic and neurobiological research. Journal of Psychiatry & Neuroscience, 24, 103–115.Google Scholar
  28. Van Steen, K., & Laird, N. M. (2004). Family-based association tests and the FBAT-toolkit. User’s manual. Retrieved January 28, 2006, from∼fbat/manual.mar4.doc
  29. Weissmann, J., Volmer, M., & Pribilla, O. (1982). Survey of the distribution of adenosine deaminase and superoxide dismutase markers in different populations. Human Heredity, 32, 344–356.PubMedCrossRefGoogle Scholar
  30. Zoroglu, S. S., Armutcu, F., Ozen, S., Gurel, A., Sivasli, E., Yetkin, O., et al. (2004). Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. European Archives of Psychiatry and Clinical Neuroscience, 254, 143–147.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joe A. Hettinger
    • 1
    • 4
  • Xudong Liu
    • 2
    • 4
    • 5
  • Jeanette Jeltje Anne Holden
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of PhysiologyQueen’s UniversityKingstonCanada
  2. 2.Department of PsychiatryQueen’s UniversityKingstonCanada
  3. 3.Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada
  4. 4.Autism Research ProgramOngwanada Resource CentreKingstonCanada
  5. 5.Autism Spectrum DisordersCanadian-American Research ConsortiumKingstonCanada

Personalised recommendations