Journal of Autism and Developmental Disorders

, Volume 37, Issue 7, pp 1381–1385 | Cite as

Brief Report: Brain Activation to Social Words in a Sedated Child with Autism

  • Dennis P. Carmody
  • Rosanne Moreno
  • Audrey E. Mars
  • Kapila Seshadri
  • George H. Lambert
  • Michael Lewis
Brief Report

Abstract

A functional magnetic resonance imaging (fMRI) study was performed on a 4-year-old girl with autism. While sedated, she listened to three utterances (numbers, hello, her own first name) played through headphones. Based on analyses of the fMRI data, the amount of total brain activation varied with the content of the utterance. The greatest volume of overall activation was in response to numbers, followed by the word ‘hello’, with the least activation to her name. Frontal cortex activation was greatest in response to her name, with less activation for numbers, and the least for the word ‘hello.’ These findings indicate that fMRI can identify and quantify the brain regions that are activated in response to words in children with autism under sedation.

Keywords

Autism fMRI Self-awareness 

References

  1. Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160, 262–273.PubMedCrossRefGoogle Scholar
  2. Altman, N. R., & Bernal, B. (2001). Brain activation in sedated children: Auditory and visual functional MR imaging. Radiology, 221(1), 56–63.PubMedCrossRefGoogle Scholar
  3. American Psychological Association (2002). Ethical principles of psychologists and code of conduct. American Psychologist, 57(12), 1060–1073.Google Scholar
  4. Beery, K. E. (1997). The Beery Buktenica developmental test of visual motor integration. New Jersey: Modern Curriculum Press.Google Scholar
  5. Carmody, D. P., & Lewis, M. (2006). Brain activation when hearing one’s own and other’s names. Brain Research, 1116, 153–158.PubMedCrossRefGoogle Scholar
  6. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.PubMedCrossRefGoogle Scholar
  7. Davidovitch, M., Glick, L., Holtzman, G., Tirosh, E., & Safir, M. P. (2000). Developmental regression in autism: Maternal perception. Journal of Autism and Developmental Disorders, 30(2), 113–119.PubMedCrossRefGoogle Scholar
  8. Elliot, C. D. (1990). Differential ability scales: Introductory and technical handbook. New York: The Psychological Corporation.Google Scholar
  9. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.PubMedCrossRefGoogle Scholar
  10. Gervais, H., Belin, P., Boddaert, N., Leboyer, M., Coez, A., Sfaello, I., Barthelemy, C., Brunelle, F., Samson, Y., & Zilbovicius, M. (2004). Abnormal cortical voice processing in autism. Nature Neuroscience, 7, 801–802.PubMedCrossRefGoogle Scholar
  11. Kain, Z. N., Gaal, D. J., Kain, T. S., Jaeger, D. D., & Rimar, S. (1994). A first-pass cost analysis of propofol versus barbiturates for children undergoing magnetic resonance imaging. Anesthesia and Analgesia, 79(6), 1102–1106.PubMedCrossRefGoogle Scholar
  12. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage, 24, 810–821.PubMedCrossRefGoogle Scholar
  13. Lancaster, J. L., Summerlin, J. L., Rainey, L., Freitas, C. S., & Fox, P. T. (1997). The Talairach Daemon, a database server for Talairach Atlas labels. Neuroimage, 5(4), S633.Google Scholar
  14. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131.PubMedCrossRefGoogle Scholar
  15. Lewis, M. (2003). The emergence of consciousness and its role in human development. Annals of the New York Academy of Sciences, 1001, 104–133.PubMedCrossRefGoogle Scholar
  16. Lord, C., Risi, S., Lambrecht, L., Cook, E. H. Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRefGoogle Scholar
  17. Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., & Sweeney, J. A. (2002). Neocortical system abnormalities in autism: An fMRI study of spatial working memory. Neurology, 59, 834–840.PubMedGoogle Scholar
  18. Merola, C., Albarracin, C., Lebowitz, P., Bienkowski, R. S., & Barst, S. M. (1995). An audit of adverse events in children sedated with chloral hydrate or propofol during imaging studies. Paediatric Anaesthesia, 5(6), 375–378.PubMedCrossRefGoogle Scholar
  19. Müller, R. A., Kleinhans, N., Kemmotsu, N., Pierce, K., & Courchesne, E. (2003). Abnormal variability and distribution of functional maps in autism: An FMRI study of visuomotor learning. American Journal of Psychiatry, 160, 1847–1862.PubMedCrossRefGoogle Scholar
  20. Perrin, F., Maquet, P., Peigneux, P., Ruby, P., Degueldre, C., Balteau, E., Del Fiore, G., Moonen, G., Luxen, A., & Laureys, S. (2005). Neural mechanisms involved in the detection of our first name: A combined ERPs and PET study. Neuropsychologia, 43, 12–19.PubMedCrossRefGoogle Scholar
  21. Rapin, I. (1997). Autism. New England Journal of Medicine, 337, 97–104.PubMedCrossRefGoogle Scholar
  22. Souweidane, M. M., Kim, K. H., McDowall, R., Ruge, M. I., Lis, E., Krol, G., et al. (1999). Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatric Neurosurgery, 30(2), 86–92.PubMedCrossRefGoogle Scholar
  23. Sparrow, S. S., Balla, D., & Cicchetti, D. V. (1984). Vineland adaptive behavior scales. (survey form). Circle Pines, MN: American Guidance Service.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Dennis P. Carmody
    • 1
  • Rosanne Moreno
    • 2
  • Audrey E. Mars
    • 2
  • Kapila Seshadri
    • 2
  • George H. Lambert
    • 3
  • Michael Lewis
    • 4
  1. 1.Institute for the Study of Child Development, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA
  2. 2.Department of Pediatrics, Division of Child Neurology and Neurodevelopmental Disabilities, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA
  3. 3.Center for Childhood Neurotoxicology and Exposure Assessment, Division of Pediatric Pharmacology and Toxicology, Pediatric Clinical Research Center, Department of Pediatrics, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA
  4. 4.Institute for the Study of Child Development, Department of Pediatrics, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA

Personalised recommendations