Journal of Autism and Developmental Disorders

, Volume 36, Issue 6, pp 779–793 | Cite as

A New Neurobehavioral Model of Autism in Mice: Pre- and Postnatal Exposure to Sodium Valproate

  • George C. WagnerEmail author
  • Kenneth R. Reuhl
  • Michelle Cheh
  • Paulette McRae
  • Alycia K. Halladay


Autism symptoms, including impairments in language development, social interactions, and motor skills, have been difficult to model in rodents. Since children exposed in utero to sodium valproate (VPA) demonstrate behavioral and neuroanatomical abnormalities similar to those seen in autism, the neurodevelopmental effects of this antiepileptic agent were examined in mice following its pre- or postnatal administration. Exposed pups were evaluated in a battery of neurodevelopmental procedures designed to assess VPA-induced retardation (wherein a behavior fails to mature on schedule), regression (wherein a behavior does mature on time but then deteriorates), or intrusions (wherein normal behaviors are overshadowed by stereotypic or self-injurious behaviors). The resulting observations were interpreted in the context of this new strategy to model autism.


Animal model Autism Sodium valproate 



This work was supported by: NS043981, ES05022, ES07148, ES11256, NJ Governor’s Council on Autism, and Johnson & Johnson.


  1. Allen, S. M., & Davis, W. M. (1999). Relationship of dopamine to serotonin in the neonatal 6-OHDA rat model of Lesch-Nyhan syndrome. Behavioral Pharmacology, 10, 467–474.CrossRefGoogle Scholar
  2. Ardinger, H. H., Atkin, J. F., Blackston, D., Elsas, L. J., Clarren, S. K., Livingstone, S., Flannery, D. B., Pellock, J. M., Harrod, M. J., Lammer, E. J., Majewski, F., Schnizel, A., Toriello, H. V., & Hanson, J. W. (1988). Verification of the fetal valproate syndrome phenotype. American Journal Medical Genetics, 29, 171–185.CrossRefGoogle Scholar
  3. Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., Barta, P. E., & Pearlson, G. D. (1999). MRI volumes of amygdale and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53, 2145–2150.PubMedGoogle Scholar
  4. Bachevalier, J., & Beauregard, M. (1993). Maturation of medial temporal lobe memory functions in rodents, monkeys, and humans. Hippocampus, 3, 191–202.PubMedGoogle Scholar
  5. Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.PubMedGoogle Scholar
  6. Chapman, J. B., & Cutler, M. G. (1989). Effects of sodium valproate on development and social behaviour in the Mongolian gerbil. Neurotoxicolology & Teratology, 11, 193–198.CrossRefGoogle Scholar
  7. Coldren, J. T., & Halloran, C. (2003). Spatial reversal as a measure of executive functioning in children with autism. Journal of Genetic Psychology, 164, 29–41.PubMedCrossRefGoogle Scholar
  8. Courchesne, E. (1997). Brainstem, cerebellar and limbic neuranatomical abnormalities in autism. Current Opinion in Neurobiology, 7, 269–278.CrossRefPubMedGoogle Scholar
  9. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R., Tigue, Z., Chisum, H. J., Moses, P., Pierce, K., Lord, C., Lincoln, A. J., Pizzo, S., Schreibman, L., Haas, R. H., Akshoofoff, N. A., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: And MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  10. Duva, C. A., Floresco, S. B., Wunderlich, G. R., Lao, T. L., Pinel, J. P., & Phillips, A. G. (1997). Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behavioral Neuroscience, 111, 1184–1196.CrossRefPubMedGoogle Scholar
  11. Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje cell size is reduced in the cerebellum of patients with autism. Cellular and Molecular Neurobiology, 22, 171–175.CrossRefPubMedGoogle Scholar
  12. Galini, R., Weiss, I., Cassel, J. C., & Kelche, C. (1998). Spatial memory, habituation and reactions to spatial and non-spatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum. Behavioral Brain Research, 96, 1–12.CrossRefGoogle Scholar
  13. Gallagher, M., & Holland, P. C. (1992). Preserved configural learning and spatial learning impairment in rats with hippocampal damage. Hippocampus, 2, 81–88.CrossRefPubMedGoogle Scholar
  14. Goldberg, M. C., Landa, R., Lasker, A., Cooper, L., & Zee, D. S. (2000). Evidence of normal cerebellar control of the vestibule-ocular reflex (VOR) in children with high-functioning autism. Journal of Autism and Developmental Disorders, 30, 519–524.CrossRefPubMedGoogle Scholar
  15. Goldman, P. S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Experimental Neurology, 32, 366–387.CrossRefPubMedGoogle Scholar
  16. Good, M., & Honey, R. C. (1997). Dissociable effects of selective lesions to hippocampal subsystems on exploratory behavior, contextual learning and spatial learning. Behavioral Neuroscience, 111, 487–493.CrossRefPubMedGoogle Scholar
  17. Haberer, L. J., & Pollack, G. M. (1994). Disposition and protein binding of valproic acid in the developing rat. Drug Metabolism and Disposition, 22, 113–119.PubMedGoogle Scholar
  18. Halladay, A. K., Kusnecov, A., Michna, L., Kita, T., Hara, C. & Wagner, G. C. (2003). Relationship between methamphetamine-induced dopamine release, hyperthermia, self-injurious behaviour and long-term dopamine depletion in BALB/c and C57BL/6 mice. Pharmacology & Toxicology, 93, 33–41.CrossRefGoogle Scholar
  19. Halladay, A. K., Wagner, G. C., Zhou, R., & Reuhl, K. R. (2004). Neurodevelopmental consequences of MeHg in an animal model of autism. Hawaii Neurotoxicology Conference. Google Scholar
  20. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., Steele, S., Makris, N., Kennedy, D., Harris, G. J., & Caviness, V. S. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1181–1192.CrossRefGoogle Scholar
  21. Ingram, J. L., Peckharm, S. M., Tisdale, B., & Rodier, P. M. (2000). Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicology & Teratology, 22, 319–324.CrossRefGoogle Scholar
  22. Inouye, M. & Murakami, U. (1980). Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum. Journal of Comparative Neurology, 194(3), 499–503.CrossRefPubMedGoogle Scholar
  23. Jinnah, H. A., Gage, F. H., & Friedmann, T. (1990). Animal models of Lesch-Nyhan Syndrome. Brain Research Bulletin, 25, 467–475.CrossRefPubMedGoogle Scholar
  24. Kates, W. R., Mostofsky, S., Zimmerman, A. W., Mazzocco, M. M., Landa, R., Warsofsky, I. S., Kaufmann, W. E., & Reiss, A. L. (1998). Neuroanatomical and neurocognitive differences in a pair of monozygotic twins discordant for strictly defined autism. Annals of Neurology, 43, 782–791.CrossRefPubMedGoogle Scholar
  25. Kelly, P. H., Sevoir, P. W., & Iversen, S. D. (1975). Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Research, 94, 507–522.CrossRefPubMedGoogle Scholar
  26. Kimble, D. P., Kirkby, R. J., & Stein, D. G. (1966). Response perseveration interpretation of passive avoidance deficits in hippocampectomized rats. Journal of Comparative and Physiological Psychology, 61, 141–143.PubMedCrossRefGoogle Scholar
  27. Koch, S., Jager-Roman, E., Losche, G., Nau, H., Rating, D., & Helge, H. (1996). Antiepileptic drug treatment in pregnancy: Drug side effects in the neonate and neurological outcome. Acta Paediatricia, 84, 739–746.CrossRefGoogle Scholar
  28. Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., & Sweeney, J. A. (2002). Neocortical system abnormalities in autism. An fMRI study of spatial working memory. Neurology, 59, 834–840.PubMedGoogle Scholar
  29. Mawer, G., Clayton-Smith, J., Coyle, H., & Kini, U. (2002). Outcome of pregnancy in women attending an outpatient epilepsy clinic: Adverse features associated with higher doses of sodium valproate. Seizure, 692, 1–7.Google Scholar
  30. Miller, E. A., Goldman, P. S., & Rosvold, H. E. (1973). Delayed recovery of function following orbital prefrontal lesions in infant monkeys. Science, 182, 304–306.PubMedCrossRefGoogle Scholar
  31. Moore, S. J., Turnpenny, P., Quinn, A., Glover, S., Lloyd, D. J., Montgomery, T., & Dean, J. C. S. (2000). A clinical study of 57 children with fetal anticonvulsant syndromes. Journal of Medical Genetics, 37, 489–497.CrossRefPubMedGoogle Scholar
  32. Morris, R. G., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. European Journal of Neuroscience, 2, 1016–1028.CrossRefPubMedGoogle Scholar
  33. Mueller, K., Saboda, S., Palmour, R., & Nyhan, W. L. (1982). Self-injurious behavior produced in rats by daily caffeine and continuous amphetamine. Pharmacology, Biochemistry & Behavior, 17, 613–617.CrossRefGoogle Scholar
  34. Muller, R. A., Pierce, K., Ambrose, J. B., Allen, G., & Courchesne, E. (2001). Atypical patterns of cerebral motor activiation in autism: A functional magnetic resonance study. Biological Psychiatry, 49, 665–676.CrossRefPubMedGoogle Scholar
  35. Oliviera, M. G., Bueno, O. F., Pomarico, A. C., & Gugliano, E. B. (1997). Strategies used by hippocampal- and caudate-putamen-lesioned rats in a learning task. Neurobiology of Learning & Memory, 68, 32–41.CrossRefGoogle Scholar
  36. Packard, M. G., & Teather, L. A. (1997). Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentaonic acid. Behavioral Neuroscience, 111, 543–551.CrossRefPubMedGoogle Scholar
  37. Petrosini, L., Molinari, M., & Gremoli, T. (1990). Hermicerebellectomy and motor behavior in rats. I. Development of motor function after neonatal lesion. Experimental Brain Research, 82, 472–482.CrossRefGoogle Scholar
  38. Pierce, K., & Courchesne, E. (2001). Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biological Psychiatry, 49, 655–664.CrossRefPubMedGoogle Scholar
  39. Pierce, K., Muller, R.A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiform ‘face area’ in autism: Evidence from functional MRI. Brain, 124, 2059–2073.CrossRefPubMedGoogle Scholar
  40. Rice, D., & Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from human and animal models. Environmental Health Perspective, 108, 511–533.CrossRefGoogle Scholar
  41. Sandi, C., Rose, S. P., & Patterson, T. A. (1992). Unilateral hippocampal lesions prevent recall of a passive avoidance task in day-old chicks. Neuroscience Letters, 141, 255–258.CrossRefPubMedGoogle Scholar
  42. Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., & Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in Neuropsychopharmacology & Biological Psychiatry, 23, 613–624.CrossRefGoogle Scholar
  43. Shishido, T., Watanabe, Y., Kato, K., Horikoshi, R., & Niwa, S. I. (2000). Effects of dopamine, NMDA, opiate, and serotonin-related agents on acute methamphetamine-induced self-injurious behavior in mice. Pharmacology, Biochemistry & Behavior, 66, 579–583.CrossRefGoogle Scholar
  44. Sobaniec-Lotoweska, M. E. (2001). Ultrastructure of purkinje cell perikara and their dendritic processes in the rat cerebellar cortex in experimental encephalopathy induced by chronic application of valproate. International Journal Experimental Pathology, 82, 337–348.CrossRefGoogle Scholar
  45. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., Maravilla, K. R., Giedd, J. N., Munson, J., Dawson, G., & Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184–192.PubMedGoogle Scholar
  46. Sweeten, T. L., Posey, D. J., Shekhar, A., & McDougle, C. J. (2002). The amygdale and related structures in the pathopysiology of autism. Pharmacology, Biochemistry & Behavior, 71, 449–455.CrossRefGoogle Scholar
  47. Thullier, F., Lalonde, R., Mahler, P., Joyal, C. C., & Lestienne, F. (1996). Dorsal striatal lesions in rats. 2: Effects on spatial and non-spatial learning. Archives of Physiological Biochemistry, 104, 307–312.CrossRefGoogle Scholar
  48. Voorhees, C. V. (1986). Handbook of behavioral teratology. New York: Plenum Press.Google Scholar
  49. Voorhees, C. V. (1987). Behavioral teratogenicity of valproic acid: Selective effects on behavior after prenatal exposure to rats. Psychopharmacology, 92, 173–179.PubMedCrossRefGoogle Scholar
  50. Wallace, R. B., Kaplan, R., & Werboff, J. (1977). Hippocampus and behavioral maturation. International Journal of Neuroscience, 7, 185–200.PubMedCrossRefGoogle Scholar
  51. Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B., & Hersh, J. H. (2001). Fetal valproate syndrome and autism: Additional evidence of an association. Developmental Medicine and Child Neurology, 43, 202–206.CrossRefPubMedGoogle Scholar
  52. Winocur, G. (1997). Hippocampal lesions alter conditioning to conditional and contextual stimuli. Behavioral Brain Research, 88, 219–229.CrossRefGoogle Scholar
  53. Wolf, L. W., LaRegina, M. C., & Tolbert, D. L. (1996). A behavioral study of the development of hereditary cerebellar ataxia in the shaker rat mutant. Behavioral Brain Research, 75, 67–81.CrossRefGoogle Scholar
  54. Wu, Y., & Wang, L. (2002). The effects of antiepileptic drugs on spatial learning and hippocampal protein kinase C ( in immature rats. Brain Development, 24, 82–87.CrossRefPubMedGoogle Scholar
  55. Wong, W., Kumar, S., Rurak, D. W., Kwan, E., Abbott, F. S., & Riggs, K. W. (2000). Ontogeny of valproic acid disposition and metabolism: A developmental study in postnatal lambs and adult sheep. Drug Metabolism and Disposition, 28, 912–919.PubMedGoogle Scholar
  56. Yu, S. Y., Sugiyama, Y., & Hanano, M. (1985). Changes in pharmacokinetics of valproic acid in guinea pigs from birth to maturity. Epilepsia, 26, 243–251.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • George C. Wagner
    • 1
    • 4
    Email author
  • Kenneth R. Reuhl
    • 2
    • 4
  • Michelle Cheh
    • 3
  • Paulette McRae
    • 1
  • Alycia K. Halladay
    • 2
  1. 1.Department of PsychologyRutgers UniversityNew BrunswickUSA
  2. 2.Department of Pharmacology and ToxicologyRutgers UniversityNew BrunswickUSA
  3. 3.Department of NeuroscienceRutgers UniversityNew BrunswickUSA
  4. 4.Center for Childhood Neurotoxicology and Exposure AssessmentRutgers UniversityNew BrunswickUSA

Personalised recommendations