Journal of Autism and Developmental Disorders

, Volume 36, Issue 5, pp 697–704

Hyperserotoninemia and Altered Immunity in Autism

  • Nancy K. Burgess
  • Thayne L. Sweeten
  • William M. McMahon
  • Robert S. Fujinami
Original Paper

Abstract

One of the most consistent biological findings in autism is elevated whole blood serotonin (5-HT) levels found in about 1/3 of cases. Immune abnormalities are also commonly observed in this disorder. Given 5-HT’s role as an immunomodulator, possible connections between 5-HT and immune abnormalities in autism are explored in this review. Areas of focus include hyperserotoninemia and cellular immune function, autoantibodies to 5-HT receptors, and 5-HT’s role in autoimmunity. Further research is needed to determine the interactions between neuropsychiatric and immune dysfunction in autism and related disorders.

Keywords

Autism Hyperserotoninemia Immune response Serotonin 

References

  1. Abramson, R. K., Self, S., Genco, P., Smith, N., Pendleton, A., Valentine, J., Wright, H. H., Cuccaro, M., & Powell, D. (1990). The relationship between lymphocyte cell surface markers and serotonin in autistic probands. American Journal of Human Genetics, 47, A45. Google Scholar
  2. Ameisen, J. C., Meade, R., & Askenase, P. W. (1989). A new interpretation of the involvement of serotonin in delayed-type hypersensitivity. Serotonin-2 receptor antagonists inhibit contact sensitivity by an effect on T cells. Journal of Immunology, 142, 3171–3179. Google Scholar
  3. Anderson, G. M., Feibel, F. C., & Cohen, D. J. (1987a). Determination of serotonin in whole blood, platelet-rich plasma, platelet-poor plasma and plasma ultrafiltrate. Life Science, 40, 1063–1070. CrossRefGoogle Scholar
  4. Anderson, G. M., Freedman, D. X., Cohen, D. J., Volkmar, F. R., Hoder, E. L., McPhedran, P., Minderaa, R. B., Hansen, C. R., & Young, J. G. (1987b). Whole blood serotonin in autistic and normal subjects. Journal of Child Psychology and Psychiatry, 28, 885–900. CrossRefGoogle Scholar
  5. Anderson, G. M., Gutknecht, L., Cohen, D. J., Brailly-Tabard, S., Cohen, J. H., Ferrari, P., Roubertoux, P. L., & Tordjman, S. (2002). Serotonin transporter promoter variants in autism: Functional effects and relationship to platelet hyperserotonemia. Molecular Psychiatry, 7, 831–836. CrossRefPubMedGoogle Scholar
  6. Askenase, P. W., Herzog, W. R., Millet, I., Paliwal, V., Ramabhadran, R., Rochester, C., Geba, G. P., & Ptak, W. (1991). Serotonin initiation of delayed-type hypersensitivity: mediation by a primitive Thy-1+ antigen-specific clone or by specific monoclonal IgE antibody. Skin Pharmacol, 4(Suppl 1), 25–42. PubMedCrossRefGoogle Scholar
  7. Aune, T. M., Golden, H. W., McGrath, K. M. (1994). Inhibitors of serotonin synthesis and antagonists of serotonin 1A receptors inhibit T lymphocyte function in vitro and cell-mediated immunity in vivo. Journal of Immunology, 153, 489–498. Google Scholar
  8. Aune, T. M., McGrath, K. M., Sarr, T., Bombara, M. P. & Kelley, K. A. (1993). Expression of 5HT1a receptors on activated human T cells. Regulation of cyclic AMP levels and T cell proliferation by 5-hydroxytryptamine. Journal of Immunology, 151, 1175–1183. Google Scholar
  9. Betancur, C., Corbex, M., Spielewoy, C., Philippe, A., Laplanche, J. L., Launay, J. M., Gillberg, C., Mouren-Simeoni, M. C., Hamon, M., Giros, B., Nosten-Bertrand, M., & Leboyer, M. (2002). Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Molecular Psychiatry, 7, 67–71. CrossRefPubMedGoogle Scholar
  10. Black, C., Kaye, J. A., & Jick, H. (2002). Relation of childhood gastrointestinal disorders to autism: Nested case-control study using data from the UK General Practice Research Database. BMJ, 325, 419–421. CrossRefPubMedGoogle Scholar
  11. Bonnet, M., Lespinats, G., & Burtin, C. (1984). Histamine and serotonin suppression of lymphocyte response to phytohemagglutinin and allogeneic cells. Cell Immunology, 83, 280–291. CrossRefGoogle Scholar
  12. Chess, S., (1971). Autism in children with congenital rubella. Journal of Autism and Childhood Schizophrenia, 1, 33–47. CrossRefPubMedGoogle Scholar
  13. Chugani, D. C., Muzik, O., Behen, M., Rothermel, R., Janisse, J. J., Lee, J., & Chugani, H. T. (1999). Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Annals of Neurology, 45, 287–295. CrossRefPubMedGoogle Scholar
  14. Chugani, D. C., Muzik, O., Rothermel, R., Behen, M., Chakraborty, P., Mangner, T., da Silva, E. A., & Chugani, H. T. (1997). Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Annals of Neurology, 42, 666–669. CrossRefPubMedGoogle Scholar
  15. Cohen, D. J., Shaywitz, B. A., Johnson, W. T., & Bowers, M., Jr. (1974). Biogenic amines in autistic and atypical children. Cerebrospinal fluid measures of homovanillic acid and 5-hydroxyindoleacetic acid. Archives of General Psychiatry, 31, 845–853. Google Scholar
  16. Comi, A. M., Zimmerman, A. W., Frye, V. H., Law, P. A., & Peeden, J. N. (1999). Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. Journal of Child Neurology, 14, 388–394. PubMedCrossRefGoogle Scholar
  17. Connolly, A. M., Chez, M. G., Pestronk, A., Arnold, S. T., Mehta, S., & Deuel, R. K. (1999). Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. Journal of Pediatrics, 134, 607–613. CrossRefPubMedGoogle Scholar
  18. Cook, E. H., Jr., Arora, R. C., Anderson, G. M., Berry-Kravis, E. M., Yan, S. Y., Yeoh, H. C., Sklena, P. J., Charak, D. A., & Leventhal, B. L. (1993a). Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder. Life Science, 52, 2005–2015. Google Scholar
  19. Cook, E. H., Jr., Courchesne, R., Lord, C., Cox, N. J., Yan, S., Lincoln, A., Haas, R., Courchesne, E., & Leventhal, B. L. (1997). Evidence of linkage between the serotonin transporter and autistic disorder. Molecular Psychiatry, 2, 247–250. Google Scholar
  20. Cook, E. H., Jr., Leventhal, B. L., & Freedman, D. X. (1988). Free serotonin in plasma: Autistic children and their first-degree relatives. Biological Psychiatry, 24, 488–491. Google Scholar
  21. Cook, E. H., Jr., Leventhal, B. L., Heller, W., Metz, J., Wainwright, M., & Freedman, D. X. (1990). Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. Journal of Neuropsychiatry and Clinical Neurosciences, 2, 268–274. Google Scholar
  22. Cook, E. H., Jr., Perry, B. D., Dawson, G., Wainwright, M. S., & Leventhal, B. L. (1993b). Receptor inhibition by immunoglobulins: Specific inhibition by autistic children, their relatives, and control subjects. Journal of Autism and Developmental Disorders, 23, 67–78. Google Scholar
  23. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA, 290, 337–344. CrossRefPubMedGoogle Scholar
  24. Croonenberghs, J., Delmeire, L., Verkerk, R., Lin, A. H., Meskal, A., Neels, H., Van der, P. M., Scharpe, S., Deboutte, D., Pison, G., & Maes, M. (2000). Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharmacology, 22, 275–283. Google Scholar
  25. Curin, J. M., Terzic, J., Petkovic, Z. B., Zekan, L., Terzic, I. M., & Susnjara, I. M. (2003). Lower cortisol and higher ACTH levels in individuals with autism. Journal of Autism and Developmental Disorders, 33, 443–448. CrossRefPubMedGoogle Scholar
  26. DeFelice, M. L., Ruchelli, E. D., Markowitz, J. E., Strogatz, M., Reddy, K. P., Kadivar, K., Mulberg, A. E., & Brown, K. A. (2003). Intestinal cytokines in children with pervasive developmental disorders. American Journal of Gastroenterology, 98, 1777–1782. CrossRefPubMedGoogle Scholar
  27. DelGiudice-Asch, G., & Hollander, E. (1997). Altered immune function in autism. CNS Spectrums, 2, 61–67. Google Scholar
  28. Denney, D. R., Frei, B. W., & Gaffney, G. R. (1996). Lymphocyte subsets and interleukin-2 receptors in autistic children. Journal of Autism and Developmental Disorders, 26, 87–97. CrossRefPubMedGoogle Scholar
  29. Dietsch, G. N., & Hinrichs, D. J. (1989). The role of mast cells in the elicitation of experimental allergic encephalomyelitis. Journal of Immunology, 142, 1476–1481. Google Scholar
  30. Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321. PubMedCrossRefGoogle Scholar
  31. Foon, K. A., Wahl, S. M., Oppenheim, J. J., & Rosenstreich, D. L. (1976). Serotonin-induced production of a monocyte chemotactic factor by human peripheral blood leukocytes. Journal of Immunology, 117, 1545–1552. Google Scholar
  32. Gabrilovac, J., Cicin-Sain, L., Osmak, M., & Jernej, B. (1992). Alteration of NK- and ADCC-activities in rats genetically selected for low or high platelet serotonin level. Journal of Neuroimmunology, 37, 213–222. CrossRefPubMedGoogle Scholar
  33. Geba, G. P., Ptak, W., Anderson, G. M., Paliwal, V., Ratzlaff, R. E., Levin, J., & Askenase, P. W. (1996). Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity. Journal of Immunology, 157, 557–565. Google Scholar
  34. Gillberg, C., Svennerholm, L., & Hamilton-Hellberg, C. (1983). Childhood psychosis and monoamine metabolites in spinal fluid. Journal of Autism and Developmental Disorders, 13, 383–396. CrossRefPubMedGoogle Scholar
  35. Gray, R. S., McCorkle, F. M., Denno, K. M., & Taylor, R. L., Jr. (1991). Modulation of chicken plaque-forming cells by serotonin and dopamine. Poultry Science, 70, 1521–1526. Google Scholar
  36. Hanley, H. G., Stahl, S. M., & Freedman, D. X. (1977). Hyperserotonemia and amine metabolites in autistic and retarded children. Archives of General Psychiatry, 34, 521–531. PubMedGoogle Scholar
  37. Hellstrand, K., Czerkinsky, C., Ricksten, A., Jansson, B., Asea, A., Kylefjord, H., & Hermodsson, S. (1993). Role of serotonin in the regulation of interferon-gamma production by human natural killer cells. Journal of Interferon Research, 13, 33–38. PubMedGoogle Scholar
  38. Hellstrand, K., & Hermodsson, S. (1987). Role of serotonin in the regulation of human natural killer cell cytotoxicity. Journal of Immunology, 139, 869–875. Google Scholar
  39. Hellstrand, K., & Hermodsson, S. (1990). Enhancement of human natural killer cell cytotoxicity by serotonin: Role of non-T/CD16+ NK cells, accessory monocytes, and 5-HT1A receptors. Cell Immunology, 127, 199–214. CrossRefGoogle Scholar
  40. Henson, P. M., & Spiegelberg, H. L. (1973). Release of serotonin from human platelets induced by aggregated immunoglobulins of different classes and subclasses. Journal of Clinical Investigation, 52, 1282–1288. PubMedCrossRefGoogle Scholar
  41. Hérault, J., Petit, E., Martineau, J., Cherpi, C., Perrot, A., Barthélémy, C., Lelord, G., & Müh, J. P. (1996). Serotonin and autism: Biochemical and molecular biology features. Psychiatry Research, 65, 33–43. CrossRefPubMedGoogle Scholar
  42. Horvath, K., Papadimitriou, J. C., Rabsztyn, A., Drachenberg, C., & Tildon, J. T. (1999). Gastrointestinal abnormalities in children with autistic disorder. Journal of Pediatrics, 135, 559–563. CrossRefPubMedGoogle Scholar
  43. Huh, G. S., Boulanger, L. M., Du, H., Riquelme, P. A., Brotz, T. M., & Shatz, C. J. (2000). Functional requirement for class I MHC in CNS development and plasticity. Science, 290, 2155–2159. CrossRefPubMedGoogle Scholar
  44. Jackson, J. C., Cross, R. J., Walker, R. F., Markesbery, W. R., Brooks, W. H., & Roszman, T. L. (1985). Influence of serotonin on the immune response. Immunology, 54, 505–512. PubMedGoogle Scholar
  45. Jackson, J. C., Walker, R. F., Brooks, W. H., & Roszman, T. L. (1988). Specific uptake of serotonin by murine macrophages. Life Science, 42, 1641–1650. CrossRefGoogle Scholar
  46. Kemper, T. L., Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57, 645–652. PubMedCrossRefGoogle Scholar
  47. Khan, N.-A., & Poisson, J.-P. (1999). 5-HT3 receptor-channels coupled with Na+ influx in human T cells: Role in T cell activation. Journal of Neuroimmunology, 99, 53–60. CrossRefPubMedGoogle Scholar
  48. Klareskog, L., Forsum, U., Scheynius, A., Kabelitz, D., & Wigzell, H. (1982). Evidence in support of a self-perpetuating HLA-DR-dependent delayed-type cell reaction in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the USA, 79, 3632–3636. PubMedCrossRefGoogle Scholar
  49. Klauck, S. M., Poustka, F., Benner, A., Lesch, K. P., & Poustka, A. (1997). Serotonin transporter (5-HTT) gene variants associated with autism? Human Molecular Genetics, 6, 2233–2238. CrossRefPubMedGoogle Scholar
  50. Kuperman, S., Beeghly, J. H., Burns, T. L., & Tsai, L. Y. (1985). Serotonin relationships of autistic probands and their first-degree relatives. Journal of the American Academy of Child and Adolescent Psychiatry, 24, 186–190. CrossRefGoogle Scholar
  51. Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531. CrossRefPubMedGoogle Scholar
  52. Linden, D. R., Chen, J.-X., Gershon, M. D., Sharkey, K. A., & Mawe, G. M. (2003). Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 285, G207–G216. PubMedGoogle Scholar
  53. Maestrini, E., Lai, C., Marlow, A., Matthews, N., Wallace, S., Bailey, A., Cook, E. H., Jr., Weeks, D. E., & Monaco, A. P. (1999). Serotonin transporter (5-HTT) and γ-aminobutyric acid receptor subunit β3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. American Journal of Medical Genetics, 88, 492–496. Google Scholar
  54. Marchetti, B., Scifo, R., Batticane, N., & Scapagnini, U. (1990). Immunological significance of opioid peptide dysfunction in infantile autism. Brain Dysfunction, 3, 346–354. Google Scholar
  55. Mårtensson, U., & Nässberger, L. (1993). Influence of antidepressants on mitogen stimulation of human lymphocytes. Toxic in Vitro, 7, 241–245. CrossRefGoogle Scholar
  56. McBride, P. A., Anderson, G. M., Hertzig, M. E., Snow, M. E., Thompson, S. M., Khait, V. D., Shapiro, T., & Cohen, D. J. (1998). Effects of diagnosis, race, and puberty on platelet serotonin levels in autism and mental retardation. Journal of the American Academy of Child and Adolescent Psychiatry, 37, 767–776. CrossRefPubMedGoogle Scholar
  57. McBride, P. A., Anderson, G. M., Hertzig, M. E., Sweeney, J. A., Kream, J., Cohen, D. J., & Mann, J. J. (1989). Serotonergic responsivity in male young adults with autistic disorder. Results of a pilot study. Archives of General Psychiatry, 46, 213–221. PubMedGoogle Scholar
  58. McDougle, C. J., Holmes, J. P., Carlson, D. C., Pelton, G. H., Cohen, D. J., & Price, L. H. (1998). A double-blind, placebo-controlled study of risperidone in adults with autistic disorder and other pervasive developmental disorders. Archives of General Psychiatry, 55, 633–641. CrossRefPubMedGoogle Scholar
  59. McDougle, C. J., Naylor, S. T., Cohen, D. J., Aghajanian, G. K., Heninger, G. R., & Price, L. H. (1996a). Effects of tryptophan depletion in drug-free adults with autistic disorder. Archives of General Psychiatry, 53, 993–1000. Google Scholar
  60. McDougle, C. J., Naylor, S. T., Cohen, D. J., Volkmar, F. R., Heninger, G. R., & Price, L. H. (1996b). A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder. Archives of General Psychiatry, 53, 1001–1008. Google Scholar
  61. Ménage, P., Thibault, G., Barthélémy, C., Lelord, G., & Bardos, P. (1992). CD4+ CD45RA+ T lymphocyte deficiency in autistic children: Effect of a pyridoxine-magnesium treatment. Brain Dysfunction, 5, 326–333. Google Scholar
  62. Minderaa, R. B., Anderson, G. M., Volkmar, F. R., Akkerhuis, G. W., & Cohen, D. J. (1987). Urinary 5-hydroxyindoleacetic acid and whole blood serotonin and tryptophan in autistic and normal subjects. Biological Psychiatry, 22, 933–940. CrossRefPubMedGoogle Scholar
  63. Money, J., Bobrow, N. A., & Clarke, F. C. (1971). Autism and autoimmune disease: A family study. Journal of Autism and Childhood Schizophrenia, 1, 146–160. CrossRefPubMedGoogle Scholar
  64. Mössner, R., & Lesch, K.-P. (1998). Role of serotonin in the immune system and in neuroimmune interactions. Brain Behavior and Immunity, 12, 249–271. CrossRefGoogle Scholar
  65. Mulder, E. J., Anderson, G. M., Kema, I. P., de Bildt, A., van Lang, N. D., den Boer, J. A., Minderaa, R. B. (2004). Platelet serotonin levels in pervasive developmental disorders and mental retardation: diagnostic group differences, within-group distribution, and behavioral correlates. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 491–499. CrossRefPubMedGoogle Scholar
  66. Paegelow, I., Werner, H., Hagen, M., Wartner, U., & Lange, P. (1985). Influence of serotonin on lymphokine secretion in vitro. International Journal of Immunopharmacology, 7, 889–896. CrossRefPubMedGoogle Scholar
  67. Perry, B. D., Cook, E. H., Jr., Leventhal, B. L., Wainwright, M. S., & Freedman, D. X. (1991). Platelet 5-HT2 serotonin receptor binding sites in autistic children and their first-degree relatives. Biological Psychiatry, 30, 121–130. Google Scholar
  68. Persico, A. M., Militerni, R., Bravaccio, C., Schneider, C., Melmed, R., Conciatori, M., Damiani, V., Baldi, A., & Keller, F. (2000). Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. American Journal of Medical Genetics, 96, 123–127. CrossRefPubMedGoogle Scholar
  69. Plioplys, A. V. (1998). Intravenous immunoglobulin treatment of children with autism. Journal of Child Neurology, 13, 79–82. PubMedCrossRefGoogle Scholar
  70. Plioplys, A. V., Greaves, A., Kazemi, K., & Silverman, E. (1994). Lymphocyte function in autism and Rett syndrome. Neuropsychobiology, 29, 12–16. PubMedCrossRefGoogle Scholar
  71. Poljak-Blazi, M., Jernej, B., Cicin-Sain, L., Boranic, M. (1990). Immunological response of rats selected for high or low platelet serotonin content. Periodicum Biologorum, 92, 189–190. Google Scholar
  72. Rogers, T., Kalaydjieva, L., Hallmayer, J., Petersen, P. B., Nicholas, P., Pingree, C., McMahon, W. M., Spiker, D., Lotspeich, L., Kraemer, H., McCague, P., Dimiceli, S., Nouri, N., Peachy, T., Yang, J., Hinds, D., Risch, N., & Myers, R.M. (1999). Exclusion of linkage to the HLA region in ninety multiplex sibships with autism. Journal of Autism and Developmental Disorders, 29, 195–201. CrossRefPubMedGoogle Scholar
  73. Schain, R. J., & Freedman, D. X. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. Journal of Pediatrics, 58, 315–320. PubMedCrossRefGoogle Scholar
  74. Scifo, R., Cioni, M., Nicolosi, A., Batticane, N., Tirolo, C., Testa, N., Quattropani, M. C., Morale, M. C., Gallo, F., & Marchetti, B. (1996). Opioid-immune interactions in autism: behavioural and immunological assessment during a double-blind treatment with naltrexone. Annali dell’Istituo Superiore di Sanita, 32, 351–359. Google Scholar
  75. Singh, V. K., & Rivas, W. H. (2004). Prevalence of serum antibodies to caudate nucleus in autistic children. Neuroscience Letters, 355, 53–56. CrossRefPubMedGoogle Scholar
  76. Singh, V. K., Singh, E. A., & Warren, R. P. (1997). Hyperserotoninemia and serotonin receptor antibodies in children with autism but not mental retardation. Biological Psychiatry, 41, 753–755. CrossRefPubMedGoogle Scholar
  77. Singh, V. K., Warren, R. P., Odell, J. D., Warren, W. L., & Cole, P. (1993). Antibodies to myelin basic protein in children with autistic behavior. Brain Behavior and Immunity, 7, 97–103. CrossRefGoogle Scholar
  78. Singh, V. K., Warren, R. P., & Singh, E. A. (1990). Binding of 3H serotonin to lymphocytes in patients with neuropsychiatric disorders. Molecular and Chemical Neuropathology, 13, 167–173. PubMedCrossRefGoogle Scholar
  79. Slauson, D. O., Walker, C., Kristensen, F., Wang, Y., & de Weck, A. L. (1984). Mechanisms of serotonin-induced lymphocyte proliferation inhibition. Cell Immunology, 84, 240–252. CrossRefGoogle Scholar
  80. Sternberg, E. M., Trial, J., & Parker, C. W. (1986). Effect of serotonin on murine macrophages: suppression of Ia expression by serotonin and its reversal by 5-HT2 serotonergic receptor antagonists. Journal of Immunology, 137, 276–282. Google Scholar
  81. Stubbs, E.G. (1978). Autistic symptoms in a child with congenital cytomegalovirus infection. Journal of Autism and Childhood Schizophrenia, 8, 37–43. CrossRefPubMedGoogle Scholar
  82. Stubbs, E. G., Crawford, M. L., Burger, D. R., Vandenbark, A. A. (1977). Depressed lymphocyte responsiveness in autistic children. Journal of Autism and Childhood Schizophrenia, 7, 49–55. CrossRefPubMedGoogle Scholar
  83. Sweeten, T. L., Bowyer, S. L., Posey, D. J., Halberstadt, G. M., & McDougle, C. J. (2003). Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics, 112, e420. CrossRefPubMedGoogle Scholar
  84. Sweeten, T. L., Posey, D. J., & McDougle, C. J. (2004). Autistic disorder in three children with cytomegalovirus infection. Journal of Autism and Developmental Disorders, 34, 583–586. CrossRefPubMedGoogle Scholar
  85. Sweeten, T. L., Posey, D. J., Shekhar, A., & McDougle, C. J. (2002). The amygdala and related structures in the pathophysiology of autism. Pharmacology Biochemistry and Behavior, 71, 449–455. CrossRefGoogle Scholar
  86. Todd, R. D., & Ciaranello, R. D. (1985). Demonstration of inter- and intraspecies differences in serotonin binding sites by antibodies from an autistic child. Proceedings of the National Academy of Sciences of the USA, 82, 612–616. PubMedCrossRefGoogle Scholar
  87. Torres, A. R., Maciulis, A., Stubbs, E. G., Cutler, A., & Odell, D. (2002). The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Human Immunology, 63, 311–316. CrossRefPubMedGoogle Scholar
  88. van Gent, T., Heijnen, C. J., & Treffers, P. D. (1997). Autism and the immune system. Journal of Child Psychology and Psychiatry, 38, 337–349. PubMedCrossRefGoogle Scholar
  89. Veenstra-VanderWeele, J., Kim, S. J., Lord, C., Courchesne, R., Akshoomoff, N., Leventhal, B. L., Courchesne, E., & Cook, E. H., Jr. (2002). Transmission disequilibrium studies of the serotonin 5-HT2A receptor gene (HTR2A) in autism. American Journal of Medical Genetics, 114, 277–283. Google Scholar
  90. Wakefield, A. J., Anthony, A., Murch, S. H., Thomson, M., Montgomery, S. M., Davies, S., O’Leary, J. J., Berelowitz, M., & Walker-Smith, J. A. (2000). Enterocolitis in children with developmental disorders. American Journal Gastroenterology, 95, 2285–2295. CrossRefGoogle Scholar
  91. Walther, D. J., Peter, J. U., Bashammakh, S., Hortnagl, H., Voits, M., Fink, H., & Bader, M. (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science, 299, 76. CrossRefPubMedGoogle Scholar
  92. Warren, R. P., Foster A. & Margaretten, N. C. (1987). Reduced natural killer cell activity in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 26, 333–335PubMedCrossRefGoogle Scholar
  93. Warren, R. P., Kane, K. K., Burger, R. A., Singh, V. K. (1990). Serotonin-induced suppression of lymphocyte DNA synthesis and natural killer cell activity. Annals of the New York Academy of Sciences, 594, 429–431. CrossRefGoogle Scholar
  94. Warren, R. P., Margaretten, N. C., Pace, N. C., & Foster, A. (1986). Immune abnormalities in patients with autism. Journal of Autism and Developmental Disorders, 16, 189–197. CrossRefPubMedGoogle Scholar
  95. Warren, R. P., & Singh, V. K. (1996). Elevated serotonin levels in autism: Association with the major histocompatibility complex. Neuropsychobiology, 34, 72–75. PubMedCrossRefGoogle Scholar
  96. Warren, R. P., Singh, V. K., Cole, P., Odell, J. D., Pingree, C. B., Warren, W. L., DeWitt, C. W., & McCullough, M. (1992). Possible association of the extended MHC haplotype B44-SC30-DR4 with autism. Immunogenetics, 36, 203–207. CrossRefPubMedGoogle Scholar
  97. Warren, R. P., Yonk, J., Burger, R. W., Odell, D., & Warren, W. L. (1995). DR-positive T cells in autism: Association with decreased plasma levels of the complement C4B protein. Neuropsychobiology, 31, 53–57. PubMedCrossRefGoogle Scholar
  98. Yirmiya, N., Pilowsky, T., Nemanov, L., Arbelle, S., Feinsilver, T., Fried, I., Ebstein, R. P. (2001). Evidence for an association with the serotonin transporter promoter region polymorphism and autism. American Journal of Medical Genetics, 105, 381–386. CrossRefPubMedGoogle Scholar
  99. Young, M. R. I., Kut, J. L., Coogan, M. P., Wright, M. A., Young, M. E., & Matthews, J. (1993). Stimulation of splenic T-lymphocyte function by endogenous serotonin and by low-dose exogenous serotonin. Immunology, 80, 395–400. PubMedGoogle Scholar
  100. Yuwiler, A., Shih, J. C., Chen, C. H., Ritvo, E. R., Hanna, G., Ellison, G. W., & King, B. H. (1992). Hyperserotoninemia and antiserotonin antibodies in autism and other disorders. Journal of Autism and Developmental Disorders, 22, 33–45. CrossRefPubMedGoogle Scholar
  101. Zhong, N., Ye, L., Ju, W., Brown, W. T., Tsiouris, J., & Cohen, I. (1999). 5-HTTLPR variants not associated with autistic spectrum disorders. Neurogenetics, 2, 129–131. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Nancy K. Burgess
    • 1
  • Thayne L. Sweeten
    • 1
  • William M. McMahon
    • 2
  • Robert S. Fujinami
    • 1
  1. 1.Department of NeurologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of PsychiatryUniversity of UtahSalt Lake CityUSA

Personalised recommendations