Journal of Autism and Developmental Disorders

, Volume 36, Issue 2, pp 225–237 | Cite as

Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

  • Elizabeth Milne
  • Sarah White
  • Ruth Campbell
  • John Swettenham
  • Peter Hansen
  • Franck Ramus

Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control, and had lower 2D:4D than controls. There were no group differences in motion or form detection. However a sub-group of children with autism were selectively impaired at motion detection. There were significant relationships between motion coherence detection and motor control in both groups of children, and also between motion detection, fine motor control and 2D:4D in the group of children with autistic spectrum disorder.


Motion detection motor control foetal testosterone autistic spectrum disorder 



We would like to thank all the children and schools who took part in this study for their time, effort and cooperation, John Manning for his discussion of 2D:4D measurement, and Marcin Szczerbinski for his discussion of statistical analysis. This research was supported by an ESRC studentship (R42200034283) and a UCL graduate school scholarship awarded to Elizabeth Milne, and partly funded by a Medical Research Council grant (G9617036) awarded to Uta Frith, and a Marie Curie fellowship of the European Community programme Quality of Life (QLGI-CT 1999-51305) awarded to Franck Ramus.


  1. Atkinson J., Braddick O., Anker S., Curran W., Andrew R., Wattam-Bell J., Braddick F.(2003). Neurobiological models of visuospatial cognition in children with Williams syndrome: measures of dorsal-stream and frontal functionDevelopmental Neuropsychology 23:139–172PubMedCrossRefGoogle Scholar
  2. Atkinson J., King J., Braddick O., Nokes L., Anker S., Braddick F.. (1997). A specific deficit of dorsal stream function in Williams’ syndrome Neuroreport 8:1919–1922PubMedCrossRefGoogle Scholar
  3. Bauman M. L., Kemper T. L. (1994). Neuroanatomic observations of the brain in autism In: Bauman M. L., Kemper T. L., (eds) The neurobiology of autism. John Hopkins University Press, Baltimore, pp. 119–145Google Scholar
  4. Berthier M. L., Starkstein S. E., Leiguarda R.. (1990). Developmental cortical anomalies in Asperger’s syndrome: neuroradiological findings in two patientsJournal of Neuropsychiatry and Clinical Neurosciences 2:197–201PubMedGoogle Scholar
  5. Bertone A., Mottron L., Jelenic P., Faubert J.. (2003). Motion perception in autism: A “Complex” IssueJournal of Cognitive Neuroscience 15:1–8CrossRefGoogle Scholar
  6. Blake R., Turner L. M., Smoski M. J., Pozdol S. L., Stone W. L.. (2003). Visual recognition of biological motion is impaired in children with autismPsychological Science 14(2):151–157PubMedCrossRefGoogle Scholar
  7. Britten K. H., Shalden M. N., Newsome W. T., Movshon J. A.. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performanceJournal of Neuroscience 12:4745–4765PubMedGoogle Scholar
  8. Brown W. M., Hines M., Fane B. A., Breedloves S. M.. (2002). Masculinized finger length patterns in human males and females with congenital adrenal hyperplasiaHormones and Behaviour 42:380–386CrossRefGoogle Scholar
  9. Chaudhuri A., (1990). Modulation of the motion aftereffect by selective attentionNature 344:60–62PubMedCrossRefGoogle Scholar
  10. Cody H., Pelphrey K., Piven J.. (2002). Structural and functional magnetic resonance imaging of autismInternational Journal of Developmental Neuroscience 20:421–438PubMedCrossRefGoogle Scholar
  11. Courchesne E., (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autismCurrent Opinion in Neurobiology 7:269–278PubMedCrossRefGoogle Scholar
  12. Courchesne E., Townsend J., Akshoomoff N. A., Saitoh O., Yeung-Courchesne R., Lincoln A. J., James, H. E., Haas, R. H., Schreibman, L., & Lau, L. (1994). Impairment in shifting attention in autistic and cerebellar patientsBehavioural Neuroscience 108: 848–865CrossRefGoogle Scholar
  13. Dow R., Moruzzi G., (1958). The physiology and pathology of the cerebellumUniversity of Minnesota Press MinneapolisGoogle Scholar
  14. Eden G., Vanmeter J., Rumsey J., Maisog J., Woods R., Zeffiro T., (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imagingNature 382: 222–233CrossRefGoogle Scholar
  15. Fawcett A. J., Nicolson R. I., Dean P., (1996). Impaired performance of children with dyslexia on a range of cerebellar tasksAnnals of Dyslexia 46: 259–283CrossRefGoogle Scholar
  16. Galaburda A. M., Menard M. T., Rosen G. D., (1994). Evidence for aberrant auditory anatomy in developmental dyslexiaProceedings of the National Academy of Science 91: 8010–8013CrossRefGoogle Scholar
  17. Gepner B., Mestre D., (2002a). Brief Report: Postural reactivity to fast visual motion differentiates autistic children from children with Asperger syndromeJournal of Autism and Developmental Disorders 32: 231–238CrossRefGoogle Scholar
  18. Gepner B., Mestre D., (2002b). Rapid visual-motion integration deficit in autismTrends in Cognitive Sciences 6: 455CrossRefGoogle Scholar
  19. Gepner B., Mestre D., Masson G., De-Schonen S., (1995). Postural effects of motion vision in young autistic childrenNeuroreport 6: 1211–1214PubMedCrossRefGoogle Scholar
  20. Geschwind N., Galaburda A. M., (1985). Cerebral Lateralization: Biological mechanisms, associations, and pathology: I. A hypothesis and a program for researchArchives of Neurology 42: 428–459PubMedGoogle Scholar
  21. Ghaziuddin M., Butler E., Tsai L., Ghaziuddin N., (1994). Is clumsiness a marker for Asperger syndrome?Journal of Intellectual Disability Research 38: 519–527PubMedCrossRefGoogle Scholar
  22. Hansen P. C., Stein J. F., Orde S. R., Winter J. L., Talcott J. B., (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? Neuroreport 12: 1527–1530PubMedCrossRefGoogle Scholar
  23. Henderson S., Sugden D., (1992). The movement assessment battery for childrenThe Psychology Corporation SidcupGoogle Scholar
  24. Herman A. E., Galaburda A. M., Fitch R. H., Carter A. R., Rosen G. D., (1997). Cerebral Microgyria, thalamic cell size and auditory temporal processing in male and female ratsCerebral Cortex 7: 453–464PubMedCrossRefGoogle Scholar
  25. Ivry R. B., Diener H. C., (1991). Impaired velocitiy perception in patients with lesions of the cerebellumJournal of Cognitive Neuroscience 3: 355–366CrossRefGoogle Scholar
  26. Kondo T., Zakany J., Innis J. W., Duboule D., (1997). Of fingers, toes and penisesNature 390: 185–198CrossRefGoogle Scholar
  27. Livingstone M. S., Rosen G. D., Drislane F. W., Galaburda A. M., (1991). Physiological and anatomical evidence for a magnocellular deficit in developmental dyslexiaProceedings of the National Academy of Science 88: 7943–7949CrossRefGoogle Scholar
  28. Lovegrove W., Bowling A., Badcock B., Blackwood M., (1980). Specific reading disability: differences in contrast sensitivity as a function of spatial frequencyScience 210: 439–440PubMedCrossRefGoogle Scholar
  29. Lyman H. B., (1978). Test scores and what they meanPrentice Hall, Inc.Englewood Cliffs, NJGoogle Scholar
  30. Manjiviona J., Prior M., (1995). Comparison of Asperger syndrome and high-functioning autistic children on a test of motor impairmentJournal of Autism and Developmental Disorders 25: 23–39PubMedCrossRefGoogle Scholar
  31. Manning J. T., (2002). Digit ratio: A pointer to fertility, behaviour and healthRutgers University Press New Brunswich NJGoogle Scholar
  32. Manning J. T., Baron-Cohen S., Wheelwright S., Sanders G., (2001). The 2nd to 4th digit ratio and autismDevelopmental Medicine & Child Neurology 43: 160–164CrossRefGoogle Scholar
  33. Manning J. T., Scutt D., Wilson J., Lewis-Jones D. I., (1998). The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, lutenizing hormone and oestrogenHuman Reproduction 13: 3000–3004PubMedCrossRefGoogle Scholar
  34. McFadden D., Bracht M. S., (2003). The relative lengths and weights of metacarpals and metatarsals in baboons (Papio hamadryas)Hormones and Behaviour 43: 347–355CrossRefGoogle Scholar
  35. Milne E., Swettenham J., Hansen P., Campbell R., Jeffries H., Plaisted K., (2002). High motion coherence thresholds in children with autismJournal of Child Psychology and Psychiatry 43: 255–263PubMedCrossRefGoogle Scholar
  36. Nawrot M., Rizzo M., (1995). Motion perception deficits from midline cerebellar lesions in humanVision Research 35: 723–731PubMedCrossRefGoogle Scholar
  37. Newsome W. T., Pare E. B., (1988). A selective impairment of motion perception following lesions of the middle temporal area (MT)Journal of Neuroscience 8: 2201–2211PubMedGoogle Scholar
  38. O’Brien J., Spencer J., Atkinson J., Braddick O., Wattam-Bell J., (2002). Form and motion coherence processing in dyspraxia: evidence of a global spatial processing deficitNeuroreport 113: 1399–1402CrossRefGoogle Scholar
  39. Ökten A., Kalyoncu M., Yaris N., (2002). The ratio of second- and fourth- digit lengths and congenital adrenal hyperplasia due to 21-hyroxylas deficiencyEarly Human Development 70: 47–54PubMedCrossRefGoogle Scholar
  40. Otsuka H., Harada M., Mori K., Hisaoka S., Nishitani H., (1999). Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study Neuroradiology 41: 517–519PubMedCrossRefGoogle Scholar
  41. Phelps V. R., (1952). Relative index finger length as a sex-influenced trait in manAmerican Journal of Human Genetics 4: 72–89PubMedGoogle Scholar
  42. Piven J., Berthier M. L., Starkstein S. E., Nehme E., Pearlson G., Folstein S., (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autismAmerican Journal of Psychiatry 147: 734–739PubMedGoogle Scholar
  43. Ramus F., (2002). Evidence for a domain-specific deficit in developmental dyslexiaBehavioral and Brain Sciences25: 767–768CrossRefGoogle Scholar
  44. Ramus F., (2003). Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction?Current Opinion in Neurobiology 13: 212–218PubMedCrossRefGoogle Scholar
  45. Ramus F., Rosen S., Dakin S. C., Day B. L., Castellote J. M., White S., & Frith U. (2003). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adultsBrain 126: 841–865PubMedCrossRefGoogle Scholar
  46. Raven, J., Court, J., & Raven, J. (1988). Raven’s standard progressive matrices. London : H.K.Lewis & Co.Ltd.Google Scholar
  47. Rose D., Bradshwaw M. F., Hibbard P. B., (2003). Attention affects the stereoscopic depth aftereffectPerception 32: 635–640PubMedCrossRefGoogle Scholar
  48. Rosen G. D., Herman A. E., Galaburda A. M., (1999). Sex differences in the effects of early neocortical injury on neuronal size distribution of the medial geniculate nucleus in the rat are mediated by perinatal gonadal steroids Cerebral Cortex 9: 27–34PubMedCrossRefGoogle Scholar
  49. Skottun B. C., (2000). The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivityVision Research 40: 111–127PubMedCrossRefGoogle Scholar
  50. Spencer J., O’Brien J., Riggs K., Braddick O., Atkinson J., Wattam-Bell J., (2000). Motion processing in autism: Evidence for a dorsal stream deficiencyNeuroreport 11: 2765–2767PubMedCrossRefGoogle Scholar
  51. Stein J., Glickstein M., (1992). Role of the cerebellum in visual guidance of movement Physiology Review 72: 972–1017Google Scholar
  52. Stein J., Talcott J., Walsh V., (2000). Controversy about the visual magnocellular deficit in developmental dyslexiaTrends in Cognitive Sciences 4: 209–211PubMedCrossRefGoogle Scholar
  53. Stein J., Walsh V., (1997). To see but not to read; the magnocellular theory of dyslexiaTrends in Neuroscience20: 147–152CrossRefGoogle Scholar
  54. Talcott J., Hansen P., Willis-Owen C., McKinnel I. W., Richardson A. J., Stein J., (1998). Visual temporal processing in adult dyslexics: evidence for M-pathway dysfunction NeuroOpthalmology 20(4): 187–201CrossRefGoogle Scholar
  55. Tallal P., (1980). Auditory temporal perception, phonics, and reading disabilities in childrenBrain and Language 9: 182–198PubMedCrossRefGoogle Scholar
  56. Thier P., Haarmeier T., Treue S., Barash S., (1999). Absence of a common functional denominator of visual disturbances in cerebellar diseaseBrain 122: 2133–2146PubMedCrossRefGoogle Scholar
  57. Tordjman S., Anderson G. M., McBride P. A., Hertzig M. E., Snow M. E., Hall L. M., Ferrari, P., & Cohen, D. J. (1995). Plasma androgens in autismJournal of Autism and Developmental Disorders 25: 295–304PubMedCrossRefGoogle Scholar
  58. Townsend J., Courchesne E., Egaas B., (1996). Slowed orienting of covert visual-spatial attention in autism: specific deficits associated with cerebellar and parietal abnormalityDevelopment and Psychopathology 8: 563–584CrossRefGoogle Scholar
  59. Wing L., (1981). Asperger’s syndrome: a clinical accountPsychological Medicine 11: 115–129PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Elizabeth Milne
    • 1
    • 5
  • Sarah White
    • 2
  • Ruth Campbell
    • 1
  • John Swettenham
    • 1
  • Peter Hansen
    • 3
  • Franck Ramus
    • 2
    • 4
  1. 1.Department of Human Communication ScienceUCLLondonUK
  2. 2.Institute of Cognitive NeuroscienceUCLLondonUK
  3. 3.Laboratory of PhysiologyOxfordUK
  4. 4.Laboratoire de Sciences Cognitives et PsycholinguistiqueEHESS/CNRS/ENSParisFrance
  5. 5.Department of PsychologyThe University of SheffieldSheffieldUK

Personalised recommendations