Journal of Autism and Developmental Disorders

, Volume 35, Issue 1, pp 91–102

Goal Directed Locomotion and Balance Control in Autistic Children

  • S. Vernazza-Martin
  • N. Martin
  • A. Vernazza
  • A. Lepellec-Muller
  • M. Rufo
  • J. Massion
  • C. Assaiante


This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed: (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy children and nine autistic children were instructed to walk to a location (a child-sized playhouse) inside the psychomotor room of the pedopsychiatric centre located approximately 5 m in front of them. A kinematic analysis of gait (ELITE system) indicates that, rather than gait parameters or balance control, the main components affected in autistic children during locomotion are the goal of the action, the orientation towards this goal and the definition of the trajectory due probably to an impairment of movement planning.


Human development goal-directed locomotion motor control anticipation coordination autism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G. I., Tsukahara, N. 1974Cerebrocerebellar communication systemsPhysiological Reviews549571006Google Scholar
  2. Assaiante, C., Thomachot, B., Aurenty, R., & Amblard, B. (1998). Organization of lateral balance control in toddlers during the first year of independent walking. Journal of Motor Behaviour, 114–129.Google Scholar
  3. Assaiante, C. 1998Development of locomotor balance control in healthy children. [Review]Neuroscience and Biobehavioural Reviews22527532Google Scholar
  4. Assaiante, C., Amblard, B. 1995An ontogenetic model for the sensorimotor organization of balance control in humansHuman Movement Science141343Google Scholar
  5. Assaiante, C., Amblard, B. 1993Ontogenesis of head stabilization in space during locomotion in children: Influence of visual cuesExperimental Brain Research93499515Google Scholar
  6. Assaiante, C., Thomachot, B., Aurenty, R. 1993Hip stabilization and lateral balance control in toddlers during the first four months of autonomous walkingNeuroreport4875878Google Scholar
  7. Barthelemy, C., Bruneau, N., Cottet-Eymard, J. M., Jouve, J., Garreau, B., Lelord, G., Muh, J. P., Peyrin, L. 1988Urinary free and conjugated catecholamines and metabolites in autistic childrenJournal of Autism Developmental Disorder18583591Google Scholar
  8. Bernstein, N. 1967The coordination and regulation of movementPergamon PressLondonGoogle Scholar
  9. Berthoz A. (1991). Les systèmes sensorimoteurs: mècanismes et propriétés adaptives. In: Rapport du séminaire de prospective microgravité, “Sciences physiques et Sciences de la vie” du CNES. 1991; 22–27.Google Scholar
  10. Brenière, Y., Brill, B., Fontaine, R. 1989Analysis of the transition from upright stance to steady state locomotion in children with under 200 days of autonomous walkingJournal of Motor Behaviour202037Google Scholar
  11. Bril, B., Brenière, Y. 1988

    Do temporal invariances exist as early as the first six months of independent walking?

    Amblard, B.Berthoz, A.Clarac, F. eds. Posture and Gait:␣Development, Adaptation and Modulation ElsevierAmsterdam2331
    Google Scholar
  12. Bril, B., Brenière, Y. 1993

    Posture and independent locomotion in early childhood: Learning to walk or learning dynamic postural control?

    Savelsberg, G. eds. The Development of Co-ordination in InfancyElsevierAmsterdam337358
    Google Scholar
  13. Brown, R. G., Marsden, C. D. 1990Cognitive function in Parkinson’s disease: From description to theoryTINS132129Google Scholar
  14. Bussel, B., Roby-Bramy, A., Azouvi, Ph., Biraben, A., Yakovleff, A., Held, J. P. 1988Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generatorBrain11112351245Google Scholar
  15. Contreras-Vidal, J. L., Stelmach, G. E. 1995A neural model of basal ganglia-thalamocortical relations in normal and Parkinsonian movementBiological Cybernetics73467476Google Scholar
  16. Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung-Courchesne, R., Lincoln, A. J., James, H. E., Haas, R. H., Schreibman, L., Lau, L. 1994Impairment in shifting attention in autistic and cerebellar patientsBehavioural Neuroscience108848865Google Scholar
  17. Damasio, A. R., Maurer, R. G. 1978A neurological model for childhood autismArchives of Neurology35777786Google Scholar
  18. Ferrigno, G., Pedotti, A. 1985ELITE: A digital dedicated hardware system for movement analysis via real-time TV signal processingIEEE Transactions on Biomedical Engineering32943950Google Scholar
  19. Forssberg, H. 1982

    Spinal locomotor functions and descending control

    Sjolund, B.Bjorklund, A. eds. Brain Stem Control of Spinal MechanismsElsevier Biomedical PressAmsterdam
    Google Scholar
  20. Grillner, S. 1975Locomotion in vertebrates: Central mechanisms and reflex interactionPhysiological Reviews55247304Google Scholar
  21. Gurfinkel, V. S., Levik, Y. S., Kazennikov, O. V., Selionov, V.␣A. 1998Locomotor-like movements evoked by leg muscle vibration in humansThe European Journal of Neuroscience1016081612Google Scholar
  22. Grossman, G. E., Leigh, R. J., Abel, L. A., Lanska, D. J., Thurston, S. E. 1988Frequency and velocity of rotational head perturbation during locomotionExperimental Brain Research70470476Google Scholar
  23. Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., Shimakawa, S., Yoneda, Y., Kuroda, Y. 1993aBrainstem involvement in high functioning autistic childrenActa Neurologica Scandinavica88123128Google Scholar
  24. Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., Kuroda, Y. 1993bBrainstem and cerebellar vermis involvement in autistic childrenJournal of Child Neurology8149153Google Scholar
  25. Hallett, M., Lebiedowska, M. K., Thomas, S. L., Stanhope, S. J., Denckla, M. B., Rumsey, J. 1993Locomotion of autistic adultsArchives of Neurology5013041308Google Scholar
  26. Jones, V., Prior, M. 1985Motor imitation abilities and neurological signs in autistic childrenJournal of Autism Developmental Disorders153746Google Scholar
  27. Kanner, L. 1943Autistic disturbances of affective contactNervous Child2217250Google Scholar
  28. Kohen-Raz, R., Volkmar, F. R., Cohen, D. J. 1992Postural control in children with autismJournal of Autism Developmental Disorders22419432Google Scholar
  29. Lelord, G., Garreau, B., Barthelemy, C., Bruneau, N., Sauvage, D. 1986Neurological aspects of infantile autism. [Review]Encephale127176.FrenchGoogle Scholar
  30. Massion, J. 1997Cerveau et Motricité. Fonctions sensori-motricesPresses universitaires de FranceParisGoogle Scholar
  31. Maurer, R. G., Damasio, A. R. 1982Childhood autism from the point of view of behavioral neurologyJournal Autism Developmental Disorders12195205Google Scholar
  32. Milner, B., Squire, L. R., Kandel, E. R. 1998Cognitive neuroscience and the study of memoryNeuron20445468Google Scholar
  33. Minshew, N. J., Luna, B., Sweeney, J. A. 1999Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autismNeurology52917922Google Scholar
  34. Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., Sasaki, M. 2000Abnormal regional cerebral blood flow in childhood autismBrain12318381844Google Scholar
  35. Ornitz, E. M. 1974The modulation of sensory input and motor output in autistic childrenJournal of Autism Childhood Schizophrenia4197215Google Scholar
  36. Patla, A. E. (1991). Adaptability of human gait. Implication for the control of locomotion. In G. E. Stelmach, & P. A. Vroon (Eds.), Advances in Psychology. North-Holland, Amsterdam, New York, Oxford, Tokyo, 78, 3–17Google Scholar
  37. Plumet, M. H., Hughes C., Tardif C., & Mouren-Siméoni M. C. (1998). L’hypothèse d’un déficit des fonctions exécutives dans l’autisme. In J. Nadel B. Rogé, (Eds.), Psychologie française, Autisme: l’option biologique 1. Recherche, Presses universitaires de Grenoble 43, 157–167Google Scholar
  38. Pozzo, T., Berthoz, A., Lefort, L. 1990Head stabilization during various locomotor task in humans. I. Normal subjectExperimental Brain Research8297106Google Scholar
  39. Rumsey, J. M., Ernst, M. 2000Functional neuroimaging of autistic disordersMental retardation and Developmental Disabilities Research Reviews6171179Google Scholar
  40. Schmitz, C., Martineau, J., Barthélémy, C., Assaiante, C. (2003). Motor control and children with autism: Deficit of anticipatory function? Neurosciences Letters, 4, 348(1), 17–20Google Scholar
  41. Sears, L. I., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., Piven, J. 1999An MRI study of the basal ganglia in autismProgress in Neuro-Psychopharmacology & Biological Psychiatry23613624Google Scholar
  42. Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., Maurer, R. G. 1998Free in PMC Movement analysis in infancy may be useful for early diagnosis of autismProceedings of the National Academy of Sciences of the United States of America951398213987Google Scholar
  43. Townsend, J., Courchesne, E., Covington, J., Westerfield, M., Harris, N. S., Lyden, P., Lowry, T. P., Press, G. A. 1999Spatial attention deficits in patients with acquired or developmental cerebellar abnormalityJournal of Neuroscience1956325643Google Scholar
  44. Vilensky, J. A., Damasio, A. R., Maurer, R. G. 1981Gait disturbances in patients with autistic behavior: A preliminary studyArchives of Neurology38646649Google Scholar
  45. Winter, D. A. 1991The biomechanics and motor control of human gait: Normal elderly and pathological2University of Waterloo PressWaterlooGoogle Scholar
  46. Woollacott, M. H, Assaiante, C., Amblard, B. 1996

    Development of balance and gait control

    Bronstein, A. M.Brandt, T.Woollacott, M. H. eds. Disorders of balance, posture and gaitArnoldLondon4163
    Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. Vernazza-Martin
    • 1
    • 6
  • N. Martin
    • 2
  • A. Vernazza
    • 3
  • A. Lepellec-Muller
    • 1
  • M. Rufo
    • 3
  • J. Massion
    • 4
  • C. Assaiante
    • 5
  1. 1.Laboratoire Sport et Culture EA2931Université Paris-X NanterreFrance
  2. 2.Lodyc UMR 7617Université Pierre et Marie CurieCedex 05France
  3. 3.Service de Pédopsychiatrie, Centre Médico-Psychologique de l’enfant et de sa familleHôpital Sainte-MargueriteFrance
  4. 4.Laboratoire Parole et LangageUniversité de Provence-CNRSAix-en-ProvenceFrance
  5. 5.Laboratoire Développement et Pathologie du MouvementCNRSFrance
  6. 6.S.Vernazza-MartinFrance

Personalised recommendations