Journal of Abnormal Child Psychology

, Volume 47, Issue 4, pp 571–587 | Cite as

Age-Adapted Stress Task in Preschoolers Does not Lead to Uniform Stress Responses

  • Kerstin Stülb
  • Nadine Messerli-Bürgy
  • Tanja H. Kakebeeke
  • Amar Arhab
  • Annina E. Zysset
  • Claudia S. Leeger-Aschmann
  • Einat A. Schmutz
  • Andrea H. Meyer
  • David Garcia-Burgos
  • Ulrike Ehlert
  • Susi Kriemler
  • Oskar G. Jenni
  • Jardena J. Puder
  • Simone MunschEmail author


Acute stress response measures serve as an indicator of physiological functioning, but have previously led to contradictory results in young children due to age-related cortisol hypo-responsivity and methodological inconsistencies in assessment. The aim of this study was to investigate stress responses during a validated age-adapted socio-evaluative stress task in children aged 2-6 years in a child care environment and to detect socio-demographic, task- and child-related characteristics of stress responses. Stress responses were assessed in 323 children for salivary cortisol and salivary alpha amylase (sAA), and in 328 children for changes in heart rate variability (HRV). These data were then associated with socio-demographic (e.g. SES), task-related (e.g. task length) and child-related characteristics (e.g. self-regulation) of stress responses using multilevel models. Analyses revealed elevated sympathetic reactivity (sAA: Coeff=0.053, p=0.004) and reduced HRV (Coeff=-0.465, p<0.001), but no hypothalamic-pituitary-adrenal (HPA) response (Coeff=0.017, p=0.08) during the stress task. Child's age (Coeff=-5.82, p<0.001) and movement during the task (Coeff=-0.17, p=0.015) were associated with acute cortisol release, while diurnal sAA was associated with acute sAA release (Coeff=0.24, p<0.001). Age (Coeff=-0.15, p=0.006) and duration of the task (Coeff=0.13, p=0.015) were further associated with change of HRV under acute stress condition. Children showed inconsistent stress responses which contradicts the assumption of a parallel activation of both stress systems in a valid stress task for young children and might be explained by a pre-arousal to the task of young children in a child care setting. Further results confirm that child- and task-related conditions need to be considered when assessing stress responses in these young children.


Children SPLASHY Stress response Cortisol Alpha amylase Heart rate variability 



We would like to thank all children, families and child care centers that contributed data to SPLASHY. We also thank all students and the research team for their valuable contribution.

Authors’ contributions

The overall study was designed and performed by SK, OJ, JP and SM. SM designed the overall aim and JP the lab values/timing of the substudy. All authors conducted this research project and contributed to the data collection. AM assisted in statistical analyses. KS drafted and NM and SM revised the first version of the manuscript. All co-authors elaborated and commented on the manuscript. All authors approved the final version of the manuscript. The last 4 authors have a shared last authorship.


The study was funded by a Sinergia grant from the SNF (Grant Number: CRSII3_147673) ( and by the Jacobs Foundation.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the ethical committee of the canton of Vaud figuring as the leading committee representing all Swiss cantons, where children and their families were involved in recruitment and study participation (No 338/13 for main ethical committee of the canton of Vaud, Switzerland).

Informed consent

Parents of the recruited children provided written informed consent.


  1. Ahadi, S. A., Rothbart, M. K., & Ye, R. (1993). Children's temperament in the US and China: Similarities and differences. European Journal of Personality, 7(5), 359–378.CrossRefGoogle Scholar
  2. Ali, N., & Pruessner, J. C. (2012). The salivary alpha amylase over cortisol ratio as a marker to assess dysregulations of the stress systems. Physiology & Behavior, 106(1), 65–72.CrossRefGoogle Scholar
  3. Alkon, A., Goldstein, L. H., Smider, N., Essex, M. J., Kupfer, D. J., & Boyce, W. (2003). Developmental and contextual influences on autonomic reactivity in young children. Developmental Psychobiology, 42(1), 64–78.PubMedCrossRefGoogle Scholar
  4. Bae, Y. J., Stadelmann, S., Klein, A. M., Jaeger, S., Hiemisch, A., Kiess, W., Ceglarek, U., et al. (2015). The hyporeactivity of salivary cortisol at stress test (TSST-C) in children with internalizing or externalizing disorders is contrastively associated with α-amylase. Journal of Psychiatric Research, 71, 78–88.Google Scholar
  5. Becker, D. R., Miao, A., Duncan, R., & McClelland, M. (2014). Behavioral self-regulation and executive function both predict visuomotor skills and early academic achievement. Early Childhood Research Quarterly, 29(4), 411–424.CrossRefGoogle Scholar
  6. Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). α-Amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36(4), 449–453.PubMedCrossRefGoogle Scholar
  7. Bould, H., Joinson, C., Sterne, J., & Araya, R. (2013). The Emotionality Activity Sociability Temperament Survey: Factor analysis and temporal stability in a longitudinal cohort. Personality and Individual Differences, 54(5), 628–633.CrossRefGoogle Scholar
  8. Buss, A. H., & Plomin, R. (1984). Temperament: Early developing personality traits. Hillsdale: Erlbaum.Google Scholar
  9. Buss, K. A., Hill Goldsmith, H., & Davidson, R. J. (2005). Cardiac reactivity is associated with changes in negative emotion in 24-month-olds. Developmental Psychobiology, 46(2), 118–132.PubMedCrossRefGoogle Scholar
  10. Core Team, R. D. C. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
  11. Davé, S., Nazareth, I., Senior, R., & Sherr, L. (2008). A comparison of father and mother report of child behaviour on the Strengths and Difficulties Questionnaire. Child Psychiatry & Human Development, 39(4), 399–413.CrossRefGoogle Scholar
  12. Davis, E. P., Donzella, B., Krueger, W. K., & Gunnar, M. R. (1999). The start of a new school year: Individual differences in salivary cortisol response in relation to child temperament. Developmental Psychobiology, 35(3), 188–196.PubMedCrossRefGoogle Scholar
  13. Davis, E. P., & Granger, D. A. (2009). Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology, 34(6), 795–804.PubMedPubMedCentralCrossRefGoogle Scholar
  14. De Weerth, C., Zijlmans, M. A. C., Mack, S., & Beijers, R. (2013). Cortisol reactions to social evaluative paradigm in 5- and 6-year-old children. Stress, 16(1), 65–72.PubMedCrossRefGoogle Scholar
  15. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391.PubMedCrossRefGoogle Scholar
  17. Diefendorff, J. M., Lord, R. G., Hepburn, E. T., Quickle, J. S., Hall, R. J., & Sanders, R. E. (1998). Perceived self-regulation and individual differences in selective attention. Journal of Experimental Psychology: Applied, 4(3), 228–247.Google Scholar
  18. Donzella, B., Gunnar, M. R., Krueger, W. K., & Alwin, J. (2000). Cortisol and vagal tone responses to competitive challenge in preschoolers: Associations with temperament. Developmental Psychobiology, 37(4), 209–220.PubMedCrossRefGoogle Scholar
  19. Dougherty, L. R., Klein, D. N., Rose, S., & Laptook, R. S. (2011). Hypothalamic-pituitary-adrenal axis reactivity in the preschool-age offspring of depressed parents moderation by early parenting. Psychological Science, 22(5), 650–658.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary–developmental theory. Development and Psychopathology, 17(02), 303–328.PubMedCrossRefGoogle Scholar
  21. El-Sheikh, M., Erath, S. A., Buckhalt, J. A., Granger, D. A., & Mize, J. (2008). Cortisol and children’s adjustment: The moderating role of sympathetic nervous system activity. Journal of Abnormal Child Psychology, 36(4), 601–611.PubMedCrossRefGoogle Scholar
  22. Evans, B. E., Greaves-Lord, K., Euser, A. S., Tulen, J. H., Franken, I. H., & Huizink, A. C. (2013). Determinants of physiological and perceived physiological stress reactivity in children and adolescents. PloS One, 8(4), e61724.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Feingold, A. (2009). Effect sizes for growth-modeling analysis for controlled clinical trials in the same metric as for classical analysis. Psychological Methods, 14(1), 43–53.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Foley, P., & Kirschbaum, C. (2010). Human hypothalamus–pituitary–adrenal axis responses to acute psychosocial stress in laboratory settings. Neuroscience & Biobehavioral Reviews, 35(1), 91–96.CrossRefGoogle Scholar
  25. Fortunato, C. K., Dribin, A. E., Granger, D. A., & Buss, K. A. (2008). Salivary alpha-amylase and cortisol in toddlers: Differential relations to affective behavior. Developmental Psychobiology, 50(8), 807–818.Google Scholar
  26. Fredrickson, B. L., Tugade, M. M., Waugh, C. E., & Larkin, G. R. (2003). What good are positive emotions in crisis? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. Journal of Personality and Social Psychology, 84(2), 365–376.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ganzeboom, H. B. (2010). A new International Socio-Economic Index (ISEI) of occupational status for the International Standard Classification of Occupation 2008 (ISCO-08) constructed with data from the ISSP 2002-2007. In Annual Conference of International Social Survey Programme, Lisbon (Vol. 1).Google Scholar
  28. Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychological Bulletin, 134(1), 31.PubMedCrossRefGoogle Scholar
  29. Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2006). Asymmetry between salivary cortisol and α-amylase reactivity to stress: Relation to aggressive behavior in adolescents. Psychoneuroendocrinology, 31(8), 976–987.PubMedCrossRefGoogle Scholar
  30. Granger, D. A., Kivlighan, K. T., El-Sheikh, M., Gordis, E. B., & Stroud, L. R. (2007). Salivary alpha-amylase in biobehavioral research: recent developments and applications. Annals of the New York Academy of Science, 1098, 122–144.CrossRefGoogle Scholar
  31. Gray, S. A. O., Lipschutz, R. S., & Scheeringa, M. S. (2018). Young children's physiological reactivity during memory recall: associations with posttraumatic stress and parent physiological synchrony. Journal of Abnormal Child Psychology, 46(4), 871–880.Google Scholar
  32. Gribbin, C. E., Watamura, S. E., Cairns, A., Harsh, J. R., & LeBourgeois, M. K. (2012). The cortisol awakening response (CAR) in 2-to 4-year-old children: Effects of acute nighttime sleep restriction, wake time, and daytime napping. Developmental Psychobiology, 54(4), 412–422.PubMedCrossRefGoogle Scholar
  33. Grob, A., Reimann, G., Gut, J., & Frischknecht, M. C. (2013). Intelligence and Development Scales–Preschool (IDS-P). Intelligenz- und Entwicklungsskalen für das Vorschulalter. Bern: Verlag Hans Huber.Google Scholar
  34. Gunnar, M. R., & Talge, N. M. (2008). Neuroendocrine measures in developmental research. In L. A. Schmidt & S. J. Segalowitz (Eds.), Developmental Psychophysiology: Theory, systems, and methods (pp. 343–364). New York: Cambridge University Press.Google Scholar
  35. Gunnar, M. R., Talge, N. M., & Herrera, A. (2009). Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 34(7), 953–967.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hill-Soderlund, A. L., Holochwost, S. J., Willoughby, M. T., Granger, D. A., Gariépy, J. L., Mills-Koonce, W. R., & Cox, M. J. (2015). The developmental course of salivary alpha-amylase and cortisol from 12 to 36 months: Relations with early poverty and later behavior problems. Psychoneuroendocrinology, 52, 311–323.PubMedCrossRefGoogle Scholar
  37. Kidd, T., Carvalho, L. A., & Steptoe, A. (2014). The relationship between cortisol responses to laboratory stress and cortisol profiles in daily life. Biological Psychology, 99, 34–40.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Korkman, M., Kemp, S., & Kirk, U. (1998). NEPSY: A developmental neuropsychological assessment. San Antonio, TX: The Psychological Corporation.Google Scholar
  39. Koss, K. J., Mliner, S. B., Donzella, B., & Gunnar, M. R. (2016). Early adversity, hypocortisolism, and behavior problems at school entry: A study of internationally adopted children. Psychoneuroendocrinology, 66, 31–38.PubMedCrossRefGoogle Scholar
  40. Kroenke, C. H., Epel, E., Adler, N., Bush, N. R., Obradović, J., Lin, J., et al. (2011). Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosomatic Medicine, 73(7), 533–540.Google Scholar
  41. Kryski, K. R., Smith, H. J., Sheikh, H. I., Singh, S. M., & Hayden, E. P. (2011). Assessing stress reactivity indexed via salivary cortisol in preschool-aged children. Psychoneuroendocrinology, 36(8), 1127–1136.PubMedCrossRefGoogle Scholar
  42. Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology, 29(1), 83–98.PubMedCrossRefGoogle Scholar
  43. Kudielka, B. M., Hellhammer, D. H., Kirschbaum, C., Harmon-Jones, E., & Winkielman, P. (2007). Ten years of research with the Trier Social Stress Test—revisited. Social Neuroscience: Integrating biological and psychological explanations of social behavior, 56–83.Google Scholar
  44. Kunz-Ebrecht, S. R., Mohamed-Ali, V., Feldman, P. J., Kirschbaum, C., & Steptoe, A. (2003). Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain, Behavior and Immunity, 17(5), 373–383.CrossRefGoogle Scholar
  45. Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis and data reporting. Frontiers in Psychology, 8, 213.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lakes, K. D. (2013). Measuring self-regulation in a physically active context: Psychometric analyses of scores derived from an observer-rated measure of self-regulation. Mental Health and Physical Activity, 8(3), 189–196.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lewis, M., & Ramsay, D. (2002). Cortisol response to embarrassment and shame. Child Development, 73(4), 1034–1045.PubMedCrossRefGoogle Scholar
  48. Lovallo, W. R. (2011). Do low levels of stress reactivity signal poor states of health? Biological Psychology, 86(2), 121–128.PubMedCrossRefGoogle Scholar
  49. Luby, J. L., Heffelfinger, A., Mrakotsky, C., Brown, K., Hessler, M., & Spitznagel, E. (2003). Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and no-disorder comparison groups. Archives of General Psychiatry, 60(12), 1248–1255.PubMedCrossRefGoogle Scholar
  50. Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biological Psychiatry, 48(10), 976–980.PubMedCrossRefGoogle Scholar
  51. Mathiesen, K. S., & Tambs, K. (1999). The EAS Temperament Questionnaire—Factor structure, age trends, reliability, and stability in a Norwegian sample. Journal of Child Psychology and Psychiatry, 40(3), 431–439.PubMedCrossRefGoogle Scholar
  52. McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338(3), 171–179.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Messerli-Bürgy, N., Kakebeeke, T. H., Arhab, A., Stuelb, K., Zysset, A., Leeger-Aschmann, C. S., . . . Puder, J. J. (2016). The Swiss Preschoolers’ Health Study (SPLASHY): Objectives and design of a prospective multi-site cohort study assessing psychological and physiological health in young children. BMC Pediatrics, 16(1), 85.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Michels, N., Sioen, I., Clays, E., De Buyzere, M., Ahrens, W., Huybrechts, I., ... & De Henauw, S. (2013). Children's heart rate variability as stress indicator: association with reported stress and cortisol. Biological Psychology, 94(2), 433-440.Google Scholar
  55. Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133(1), 25–45.PubMedCrossRefGoogle Scholar
  56. Miller, A. L., Clifford, C., Sturza, J., Rosenblum, K., Vazquez, D. M., Kaciroti, N., & Lumeng, J. C. (2013). Blunted cortisol response to stress is associated with higher body mass index in low-income preschool-aged children. Psychoneuroendocrinology, 38(11), 2611–2617.PubMedCrossRefGoogle Scholar
  57. Miller, A. L., Sturza, J., Rosenblum, K., Vazquez, D. M., Kaciroti, N., & Lumeng, J. C. (2015). Salivary alpha amylase diurnal pattern and stress response are associated with body mass index in low-income preschool-aged children. Psychoneuroendocrinology, 53, 40–48.PubMedCrossRefGoogle Scholar
  58. Mills, R. S. L., Imm, G. P., Walling, B. R., & Weiler, H. A. (2008). Cortisol reactivity and regulation associated with shame responding in early childhood. Developmental Psychology, 44(5), 1369–1380.PubMedCrossRefGoogle Scholar
  59. Nater, U. M., Rohleder, N., Gaab, J., Berger, S., Jud, A., Kirschbaum, C., & Ehlert, U. (2005). Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. International Journal of Psychophysiology, 55(3), 333–342.PubMedCrossRefGoogle Scholar
  60. Nater, U. M., Bohus, M., Abbruzzese, E., Ditzen, B., Gaab, J., Kleindienst, N., et al. (2010). Increased psychological and attenuated cortisol and alpha-amylase responses to acute psychosocial stress in female patients with borderline personality disorder. Psychoneuroendocrinology, 35(10), 1565–1572.PubMedCrossRefGoogle Scholar
  61. Nikolić, M., de Vente, W., Colonnesi, C., & Bögels, S. M. (2016). Autonomic arousal in children of parents with and without social anxiety disorder: a high-risk study. Journal of Child Psychology and Psychiatry, 57(9), 1047–1055.PubMedCrossRefGoogle Scholar
  62. Ouellet-Morin, I., Boivin, M., Dionne, G., Lupien, S. J., Arsenault, L., Barr, R. G., et al. (2008). Variations in heritability of cortisol reactivity to stress as a function of early familial adversity among 19-month-old twins. Archives of General Psychiatry, 65(2), 211–218.PubMedCrossRefGoogle Scholar
  63. Pervanidou, P., & Chrousos, G. P. (2012). Metabolic consequences of stress during childhood and adolescence. Metabolism, 61(5), 611–619.PubMedCrossRefGoogle Scholar
  64. Posner, M. I., & Rothbart, M. K. (1998). Attention, self–regulation and consciousness. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1377), 1915–1927.PubMedCrossRefGoogle Scholar
  65. Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. Development and Psychopathology, 12(03), 427–441.CrossRefGoogle Scholar
  66. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916–931.PubMedCrossRefGoogle Scholar
  67. Roos, L. E., Giuliano, R. J., Beauchamp, K. G., Gunnar, M., Amidon, B., & Fisher, P. A. (2017). Validation of autonomic and endocrine reactivity to a laboratory stressor in young children. Psychoneuroendocrinology, 77, 51–55.PubMedCrossRefGoogle Scholar
  68. Saudino, K. J. (2005). Behavioral genetics and child temperament. Journal of Developmental and Behavioral Pediatrics, 26(3), 214.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Simons, S. S., Cillessen, A. H., & de Weerth, C. (2017). Cortisol stress responses and children's behavioral functioning at school. Developmental Psychobiology, 59(2), 217–224.PubMedCrossRefGoogle Scholar
  70. Spinath, F. M. (2000). Temperamentsmerkmale bei Kindern. Zeitschrift für Differentielle und Diagnostische Psychologie, 21, 66–75.CrossRefGoogle Scholar
  71. Spinrad, T. L., Eisenberg, N., Granger, D. A., Eggum, N. D., Sallquist, J., Haugen, R. G., et al. (2009). Individual differences in preschoolers' salivary cortisol and alpha-amylase reactivity: Relations to temperament and maladjustment. Hormones and Behavior, 56(1), 133–139.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Talge, N. M., Donzella, B., & Gunnar, M. R. (2008). Fearful temperament and stress reactivity among preschool-aged children. Infant and Child Development, 17(4), 427–445.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50(4), 632–639.PubMedCrossRefGoogle Scholar
  74. Tolep, M. R., & Dougherty, L. R. (2014). The Conundrum of the Laboratory: Challenges of Assessing Preschool-Age Children’s Salivary Cortisol Reactivity. Journal of Psychopathology and Behavioral Assessment, 36(3), 350–357.CrossRefGoogle Scholar
  75. Ursache, A., Noble, K. G., & Blair, C. (2015). Socioeconomic status, subjective social status, and perceived stress: Associations with stress physiology and executive functioning. Behavioral Medicine, 41(3), 145–154.PubMedCrossRefGoogle Scholar
  76. Van Bakel, H. J., & Riksen-Walraven, J. M. (2004). Stress reactivity in 15 month-old infants: Links with infant temperament, cognitive competence, and attachment security. Developmental Psychobiology, 44(3), 157–167.PubMedCrossRefGoogle Scholar
  77. Van der Veen-Mulders, L. Nauta, M. H. Timmerman, M. E van den Hoofdakker, B. J. & Hoekstra, P. J (2017) Predictors of discrepancies between fathers and mothers in rating behaviors of preschool children with and without ADHD. European Child & Adolescent Psychiatry, 26(3), 365–376.Google Scholar
  78. Watamura, S. E., Donzella, B., Kertes, D. A., & Gunnar, M. R. (2004). Developmental changes in baseline cortisol activity in early childhood: Relations with napping and effortful control. Developmental Psychobiology, 45(3), 125–133.PubMedCrossRefGoogle Scholar
  79. Wellhoener, P., Born, J., Fehm, H. L., & Dodt, C. (2004). Elevated resting and exercise-induced cortisol levels after mineralocorticoid receptor blockade with canrenoate in healthy humans. The Journal of Clinical Endocrinology & Metabolism, 89(10), 5048–5052.CrossRefGoogle Scholar
  80. Wichers, M., Kenis, G., Jacobs, N., Myin-Germeys, I., Schruers, K., Mengelers, R., et al. (2008). The psychology of psychiatric genetics: Evidence that positive emotions in females moderate genetic sensitivity to social stress associated with the BDNF Val6 6 Met polymorphism. Journal of Abnormal Psychology, 117(3), 699–704.PubMedCrossRefGoogle Scholar
  81. Willoughby, M. T., Wirth, R. J., & Blair, C. B. (2011). Contributions of modern measurement theory to measuring executive function in early childhood: An empirical demonstration. Journal of Experimental Child Psychology, 108(3), 414–435.PubMedCrossRefGoogle Scholar
  82. Wolf, J. M., Nicholls, E., & Chen, E. (2008). Chronic stress, salivary cortisol and α-amylase in children with asthma and healthy children. Biological Psychology, 78(1), 20–28.PubMedCrossRefGoogle Scholar
  83. Yim, I. S., Quas, J. A., Cahill, L., & Hayakawa, C. M. (2010). Children's and adults’ salivary cortisol responses to an identical psychosocial laboratory stressor. Psychoneuroendocrinology, 35(2), 241–248.PubMedCrossRefGoogle Scholar
  84. Zimmermann, L. K., & Stansbury, K. (2004). The influence of emotion regulation, level of shyness, and habituation on the neuroendocrine response of three-year-old children. Psychoneuroendocrinology, 29(8), 973–982.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical Psychology and PsychotherapyUniversity of FribourgFribourgSwitzerland
  2. 2.Department of Psychology - Clinical Child Psychology and Biological PsychologyUniversity of FribourgFribourgSwitzerland
  3. 3.Endocrinology, Diabetes & Metabolism ServiceCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
  4. 4.Child Development CenterUniversity Children’s Hospital ZurichZurichSwitzerland
  5. 5.Children’s Research CenterUniversity Children’s Hospital ZurichZurichSwitzerland
  6. 6.Epidemiology, Biostatistics and Prevention InstituteUniversity of ZurichZurichSwitzerland
  7. 7.Department for PsychologyUniversity of BaselBaselSwitzerland
  8. 8.Department of Psychology - Clinical Psychology and PsychotherapyUniversity of ZurichZurichSwitzerland
  9. 9.Division of Pediatric Endocrinology, Diabetology and ObesityCentre Hospitalier Universitaire Vaudois (CHUV), Hôtel des PatientsLausanneSwitzerland

Personalised recommendations