Advertisement

Journal of Abnormal Child Psychology

, Volume 47, Issue 4, pp 659–670 | Cite as

Extinction Learning as a Potential Mechanism Linking High Vagal Tone with Lower PTSD Symptoms among Abused Youth

  • Jessica L. Jenness
  • Adam Bryant Miller
  • Maya L. Rosen
  • Katie A. McLaughlinEmail author
Article

Abstract

Childhood abuse is a potent risk factor for psychopathology, including posttraumatic stress disorder (PTSD). Research has shown high resting vagal tone, a measure of parasympathetic nervous system function, protects abused youth from developing internalizing psychopathology, but potential mechanisms explaining this effect are unknown. We explored fear extinction learning as a possible mechanism underlying the protective effect of vagal tone on PTSD symptoms among abused youth. We measured resting respiratory sinus arrhythmia (RSA) and skin conductance responses (SCR) during a fear conditioning and extinction task in youth with variability in abuse exposure (N = 94; aged 6–18 years). High RSA predicted lower PTSD symptoms and enhanced extinction learning among abused youths. In a moderated-mediation model, extinction learning mediated the association of abuse with PTSD symptoms only among youth with high RSA. These findings highlight extinction learning as a possible mechanism linking high vagal tone to decreased risk for PTSD symptoms among abused youth.

Keywords

Respiratory sinus arrhythmia Resting vagal tone Posttraumatic stress disorder Fear extinction Child abuse 

Notes

Acknowledgments

This research was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (T32 HD057822-06: JLJ; F32 HD089514: MLR), the National Institute of Mental Health (R01-MH103291: KAM; F32 MH108238: ABM; K23MH112872-01: JLJ), a Brain and Behavior Research Foundation NARSAD Young Investigator Grant (KAM), and a Jacobs Foundation Early Career Research Fellowship (KAM).

Compliance with Ethical Standards

Conflict of Interest

The authors have no conflicts of interest to disclose.

Ethical Approval

All procedures were approved by the Institutional Review Board at the University of Washington and performed in accordance with the ethical standards as outlined in the 1964 Declaration of Helsinki.

Informed Consent

Youth completed questionnaire measures to assess for PTSD symptomatology. Informed consent was obtained from the parent or guardian who attended the session with the participant, and assent was provided by all youth participants.

Supplementary material

10802_2018_464_MOESM1_ESM.docx (16 kb)
Supplemental Table 1 (DOCX 15 kb)
10802_2018_464_MOESM2_ESM.docx (63 kb)
Supplemental Table 2 (DOCX 62 kb)
10802_2018_464_MOESM3_ESM.jpg (68 kb)
Supplemental Fig. 1 Fear conditioning task (JPG 68 kb)

References

  1. Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74(2), 243–262.Google Scholar
  2. Asmundson, G. J. G., & Stapleton, J. A. (2008). Associations between dimensions of anxiety sensitivity and PTSD symptom clusters in active-duty police officers. Cognitive Behaviour Therapy, 37, 66–75.  https://doi.org/10.1080/16506070801969005.Google Scholar
  3. Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate behavioral research, 40(3), 373–400.Google Scholar
  4. Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13(02), 183–214.Google Scholar
  5. Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885–908.Google Scholar
  6. Bernstein, D. P., Ahluvalia, T., Pogge, D., & Handelsman, L. (1997). Validity of the childhood trauma questionnaire in an adolescent psychiatric population. Journal of the American Academy of Child & Adolescent Psychiatry, 36(3), 340–348.Google Scholar
  7. Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30(2), 183–196.Google Scholar
  8. Berntson, G G, Bigger, J. T., Jr, Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648.Google Scholar
  9. Bifulco, A., Brown, G. W., & Harris, T. O. (1994). Childhood experience of care and abuse (CECA): A retrospective interview measure. Journal of Child Psychology and Psychiatry, 35(8), 1419–1435.Google Scholar
  10. Busso, D. S., McLaughlin, K. A., & Sheridan, M. A. (2014). MEDIA EXPOSURE AND SYMPATHETIC NERVOUS SYSTEM REACTIVITY PREDICT PTSD SYMPTOMS AFTER THE BOSTON MARATHON BOMBINGS: Research article: Vulnerability to PTSD symptoms following a terrorist attack. Depression and Anxiety, 31(7), 551–558.  https://doi.org/10.1002/da.22282.Google Scholar
  11. Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2007). Handbook of psychophysiology. Cambridge University Press.Google Scholar
  12. Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, and implications for childhood adjustment. Developmental Psychobiology, 45(3), 101–112.Google Scholar
  13. Calkins, S. D., Graziano, P. A., & Keane, S. P. (2007). Cardiac vagal regulation differentiates among children at risk for behavior problems. Biological Psychology, 74(2), 144–153.Google Scholar
  14. Childs, J. E., DeLeon, J., Nickel, E., & Kroener, S. (2017). Vagus nerve stimulation reduces cocaine seeking and alters plasticity in the extinction network. Learning & Memory, 24(1), 35–42.Google Scholar
  15. Daban, C., Martinez-Aran, A., Cruz, N., & Vieta, E. (2008). Safety and efficacy of Vagus nerve stimulation in treatment-resistant depression. A systematic review. Journal of Affective Disorders, 110(1), 1–15.Google Scholar
  16. Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. Handbook of Psychophysiology, 2, 200–223.Google Scholar
  17. Descilo, T., Vedamurtachar, A., Gerbarg, P. L., Nagaraja, D., Gangadhar, B. N., Damodaran, B., Adelson, B., Braslow, L. H., Marcus, S., & Brown, R. P. (2010). Effects of a yoga breath intervention alone and in combination with an exposure therapy for post-traumatic stress disorder and depression in survivors of the 2004 South-East Asia tsunami. Acta Psychiatrica Scandinavica, 121(4), 289–300.Google Scholar
  18. Ditto, B., Eclache, M., & Goldman, N. (2006). Short-term autonomic and cardiovascular effects of mindfulness body scan meditation. Annals of Behavioral Medicine, 32(3), 227–234.  https://doi.org/10.1207/s15324796abm3203_9.Google Scholar
  19. Dorsey, S., Briggs, E. C., & Woods, B. A. (2011). Cognitive-behavioral treatment for posttraumatic stress disorder in children and adolescents. Child and Adolescent Psychiatric Clinics of North America, 20(2), 255–269.Google Scholar
  20. Eisenberg, N., Fabes, R. A., Murphy, B., Maszk, P., Smith, M., & Karbon, M. (1995). The role of emotionality and regulation in Children’s social functioning: A longitudinal study. Child Development, 66(5), 1360–1384.  https://doi.org/10.1111/j.1467-8624.1995.tb00940.x.Google Scholar
  21. El-Sheikh, M., & Whitson, S. A. (2006). Longitudinal relations between marital conflict and child adjustment: Vagal regulation as a protective factor. Journal of Family Psychology, 20(1), 30–39.Google Scholar
  22. El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interparental conflict and children’s adjustment and physical health: The moderating role of vagal tone. Child Development, 72(6), 1617–1636.Google Scholar
  23. Fabes, R. A., Eisenberg, N., & Eisenbud, L. (1993). Behavioral and physiological correlates of children’s reactions to others in distress. Developmental Psychology, 29(4), 655–663.  https://doi.org/10.1037/0012-1649.29.4.655.Google Scholar
  24. Friedman, B. H. (2007). An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74(2), 185–199.Google Scholar
  25. Glover, E. M., Phifer, J. E., Crain, D. F., Norrholm, S. D., Davis, M., Bradley, B., Ressler, K. J., & Jovanovic, T. (2011). Tools for translational neuroscience: PTSD is associated with heightened fear responses using acoustic startle but not skin conductance measures. Depression and Anxiety, 28(12), 1058–1066.  https://doi.org/10.1002/da.20880.Google Scholar
  26. Guthrie, R. M., & Bryant, R. A. (2005). Auditory startle response in firefighters before and after trauma exposure. American Journal of Psychiatry, 162(2), 283–290.Google Scholar
  27. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Google Scholar
  28. Katz, L. F., & Gottman, J. M. (1995). Vagal tone protects children from marital conflict. Development and Psychopathology, 7(1), 83–92.Google Scholar
  29. Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. Neuroimage, 44(1), 213–222.Google Scholar
  30. LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences, 111(8), 2871–2878.  https://doi.org/10.1073/pnas.1400335111.Google Scholar
  31. Liu, J., Fang, J., Wang, Z., Rong, P., Hong, Y., Fan, Y., … others. (2016). Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. Journal of Affective Disorders, 205, 319–326.Google Scholar
  32. Lucini, D., Di Fede, G., Parati, G., & Pagani, M. (2005). Impact of chronic psychosocial stress on autonomic cardiovascular regulation in otherwise healthy subjects. Hypertension, 46(5), 1201–1206.Google Scholar
  33. McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional approach to childhood adversity. Current Directions in Psychological Science, 25(4), 239–245.Google Scholar
  34. McLaughlin, K. A., Green, J. G., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2012). Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. Archives of General Psychiatry, 69(11), 1151–1160.Google Scholar
  35. McLaughlin, K. A., Koenen, K. C., Hill, E. D., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2013). Trauma exposure and posttraumatic stress disorder in a national sample of adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 52(8), 815–830.Google Scholar
  36. McLaughlin, K. A., Alves, S., & Sheridan, M. A. (2014a). Vagal regulation and internalizing psychopathology among adolescents exposed to childhood adversity. Developmental Psychobiology, 56(5), 1036–1051.Google Scholar
  37. McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014b). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience & Biobehavioral Reviews, 47, 578–591.Google Scholar
  38. McLaughlin, K. A., Rith-Najarian, L., Dirks, M. A., & Sheridan, M. A. (2015). Low vagal tone magnifies the association between psychosocial stress exposure and internalizing psychopathology in adolescents. Journal of Clinical Child & Adolescent Psychology, 44(2), 314–328.Google Scholar
  39. McLaughlin, K. A., Sheridan, M. A., Gold, A. L., Duys, A., Lambert, H. K., Peverill, M., Heleniak, C., Shechner, T., Wojcieszak, Z., & Pine, D. S. (2016). Maltreatment exposure, brain structure, and fear conditioning in children and adolescents. Neuropsychopharmacology Retrieved from http://www.nature.com/npp/journal/vaop/ncurrent/full/npp2015365a.html , 41, 1956–1964.Google Scholar
  40. Mezzacappa, E., Kindlon, D., Saul, J. P., & Earls, F. (1998). Executive and motivational control of performance task behavior, and autonomic heart-rate regulation in children: Physiologic validation of two-factor solution inhibitory control. Journal of Child Psychology and Psychiatry, 39(4), 525–531.Google Scholar
  41. Milad, M. R., & Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 420(6911), 70–74.Google Scholar
  42. Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review of Psychology, 63, 129–151.Google Scholar
  43. Milad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., Zeidan, M. A., Handwerger, K., Orr, S. P., & Rauch, S. L. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66(12), 1075–1082.  https://doi.org/10.1016/j.biopsych.2009.06.026.Google Scholar
  44. Neumann, S. A., Brown, S. M., Ferrell, R. E., Flory, J. D., Manuck, S. B., & Hariri, A. R. (2006). Human choline transporter gene variation is associated with corticolimbic reactivity and autonomic-cholinergic function. Biological Psychiatry, 60(10), 1155–1162.Google Scholar
  45. Peña, D. F., Engineer, N. D., & McIntyre, C. K. (2013). Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biological Psychiatry, 73(11), 1071–1077.Google Scholar
  46. Peña, D. F., Childs, J. E., Willett, S., Vital, A., McIntyre, C. K., & Kroener, S. (2014). Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Frontiers in Behavioral Neuroscience, 8 Retrieved from https://books.google.com/books?hl=en&lr=&id=-wXmCgAAQBAJ&oi=fnd&pg=PA60&dq=pena+vagal+tone+rats&ots=ZDA8DNWquX&sig=GhM0KKKQmGQf9BX4G9Q6_zsVGH0.
  47. Pine, D. S., Wasserman, G. A., Miller, L., Coplan, J. D., Bagiella, E., Kovelenku, P., et al. (1998). Heart period variability and psychopathology in urban boys at risk for delinquency. Psychophysiology, 35(5), 521–529.Google Scholar
  48. Pole, N., Neylan, T. C., Otte, C., Henn-Hasse, C., Metzler, T. J., & Marmar, C. R. (2009). Prospective prediction of posttraumatic stress disorder symptoms using fear potentiated auditory startle responses. Biological Psychiatry, 65(3), 235–240.Google Scholar
  49. Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301–318.Google Scholar
  50. Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143.Google Scholar
  51. Raine, A. (1996). Autonomic nervous system factors underlying disinhibited, antisocial, and violent behavior biosocial perspectives and treatment implications. Annals of the New York Academy of Sciences, 794(1), 46–59.Google Scholar
  52. Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke-Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19(03), 701–727.Google Scholar
  53. Shechner, T., Britton, J. C., Ronkin, E. G., Jarcho, J. M., Mash, J. A., Michalska, K. J., Leibenluft, E., & Pine, D. S. (2015). Fear conditioning and extinction in anxious and nonanxious youth and adults: Examining a novel developmentally appropriate fear-conditioning task. Depression and Anxiety, 32(4), 277–288.  https://doi.org/10.1002/da.22318.Google Scholar
  54. Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. P. (1990). Methodological guidelines for impedance Cardiography. Psychophysiology, 27(1), 1–23.  https://doi.org/10.1111/j.1469-8986.1990.tb02171.x.Google Scholar
  55. Steinberg, A. M., Brymer, M. J., Decker, K. B., & Pynoos, R. S. (2004). The University of California at Los Angeles post-traumatic stress disorder reaction index. Current Psychiatry Reports, 6(2), 96–100.Google Scholar
  56. Steinberg, A. M., Brymer, M. J., Kim, S., Briggs, E. C., Ippen, C. G., Ostrowski, S. A., Gully, K. J., & Pynoos, R. S. (2013). Psychometric properties of the UCLA PTSD reaction index: Part I. Journal of Traumatic Stress, 26(1), 1–9.  https://doi.org/10.1002/jts.21780.Google Scholar
  57. Stewart, S. H., Conrod, P. J., Pihl, R. O., & Dongier, M. (1999). Relations between posttraumatic stress symptom dimensions and substance dependence in a community-recruited sample of substance-abusing women. Psychology of Addictive Behaviors, 13(2), 78–88.  https://doi.org/10.1037/0893-164X.13.2.78.Google Scholar
  58. Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.Google Scholar
  59. Vouimba, R.-M., & Maroun, M. (2011). Learning-induced changes in mPFC–BLA connections after fear conditioning, extinction, and reinstatement of fear. Neuropsychopharmacology, 36(11), 2276–2285.Google Scholar
  60. Walker, E. A., Unutzer, J., Rutter, C., Gelfand, A., Saunders, K., VonKorff, M., & Katon, W. (1999). Costs of health care use by women HMO members with a history of childhood abuse and neglect. Archives of General Psychiatry, 56(7), 609–613.Google Scholar
  61. Widom, C. S., Weiler, B. L., & Cottler, L. B. (1999). Childhood victimization and drug abuse: A comparison of prospective and retrospective findings. Journal of consulting and clinical psychology, 67(6), 867.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleUSA
  2. 2.Department of Psychology and NeuroscienceUniversity of North CarolinaCameronUSA
  3. 3.Department of PsychologyUniversity of WashingtonSeattleUSA
  4. 4.Department of PsychologyHarvard UniversityBostonUSA

Personalised recommendations