Journal of Abnormal Child Psychology

, Volume 42, Issue 4, pp 659–668 | Cite as

Paralimbic Gray Matter Reductions in Incarcerated Adolescent Females with Psychopathic Traits

  • Lora M. Cope
  • Elsa Ermer
  • Prashanth K. Nyalakanti
  • Vince D. Calhoun
  • Kent A. Kiehl
Article

Abstract

Psychopathy-related paralimbic and limbic structural brain abnormalities have been implicated in incarcerated adult and adolescent male samples. However, there have been few neuroimaging studies of psychopathic traits in females in general and no studies from incarcerated female youth in particular. Here we present the first study to examine the relationship between brain gray matter volumes and psychopathic traits (assessed using the Psychopathy Checklist-Youth Version [PCL-YV]) in a sample of maximum-security incarcerated female adolescents (N = 39; mean age = 17.6 years). Consistent with male samples, regional gray matter volumes were negatively related to psychopathic traits in female youth offenders in limbic and paralimbic areas, including orbitofrontal cortex, parahippocampal cortex, temporal poles, and left hippocampus. These results provide evidence that psychopathic traits manifest similar neural abnormalities across sex and age.

Keywords

Voxel-based morphometry (VBM) Psychopathic traits Adolescent females Paralimbic structures Psychopathy Checklist-Youth Version (PCL-YV) Incarcerated offenders 

Notes

Acknowledgments

This research was supported by NIMH R01 MH071896 (PI: KAK). EE was supported by NIMH NRSA F32 MH086247. We are grateful to the staff and clients (and parents) at the Youth Diagnostic and Detention Facility and the New Mexico Children, Youth and Families Department for their support and assistance in making this research possible.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10802_2013_9810_MOESM1_ESM.docx (28 kb)
ESM 1(DOCX 27.5 kb)
10802_2013_9810_Fig3_ESM.png (247 kb)
Figure S1Regional gray matter volumes negatively associated with Psychopathy Checklist-Youth Version (PCL-YV) Total scores, controlling for brain volume, age at scan, and years of regular substance use. All voxels indicated in blue color map represent regions that are significant in the whole brain at p < 0.05 and 1366-voxel extent. Coordinates are in Montreal Neurological Institute (MNI) space. The color bar represents t-values. Significant negative clusters can be found in lateral orbitofrontal cortex, temporal poles, and insula. There were no positive associations for this model. (PNG 246 kb)
10802_2013_9810_Fig4_ESM.png (239 kb)
Figure S2Regional gray matter volumes negatively associated with Psychopathy Checklist-Youth Version (PCL-YV) Total scores, controlling for brain volume, age at scan, substance dependence, and anxiety diagnosis. All voxels indicated in blue color map represent regions that are significant in the whole brain at p < 0.05 and 1366-voxel extent. Coordinates are in Montreal Neurological Institute (MNI) space. The color bar represents t-values. There were no positive associations for this model. (PNG 239 kb)
10802_2013_9810_Fig5_ESM.png (1.2 mb)
Figure S3Panel a: Regional gray matter volumes negatively associated with Psychopathy Checklist-Youth Version (PCL-YV) Factor 1 scores, controlling for brain volume, age at scan, substance dependence, anxiety diagnosis, and Factor 2 scores. Panel b: Regional gray matter volumes negatively associated with PCL-YV Factor 2 scores in females, controlling for brain volume, age at scan, substance dependence, anxiety diagnosis, and Factor 1 scores. These regions are significant in the whole brain at p < 0.05 and 1366-voxel extent. Coordinates are in Montreal Neurological Institute (MNI) space, and the color bar represents t-values. There were no positive associations for this model. (PNG 1213 kb)
10802_2013_9810_Fig6_ESM.png (58 kb)
Figure S4Substance dependence, brain volume, age, participant sex, PCL-YV Total scores, and a participant sex by PCL-YV Total score interaction term predicted regional gray matter volume, with males and females combined into one sample (N = 230). At p < 0.05 and a 1334-voxel extent, there were no regions significantly associated with the interaction term. This scatterplot illustrates these effects in the left temporal pole, where main effects of participant sex and PCL-YV scores are significant, but the interaction is not. (PNG 58 kb)
10802_2013_9810_Fig7_ESM.png (262 kb)
Figure S5Regional gray matter volume differences in male (n = 191) and female (n = 39) adolescents, controlling for brain volume and age at scan. Regions with greater gray matter volume in males are in orange/red. Regions with greater gray matter volume in females are in blue. These regions are significant in the whole brain at p < 0.05 and 1334-voxel extent. Coordinates are in Montreal Neurological Institute (MNI) space. The color bar represents t-values. (PNG 261 kb)

References

  1. American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). Washington, DC: American Psychiatric Association Press.Google Scholar
  2. Anderson, D. (1999). The aggregate burden of crime. Journal of Law and Economics, 42, 611–642.CrossRefGoogle Scholar
  3. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2, 1032–1037.PubMedCrossRefGoogle Scholar
  4. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry. NeuroImage, 11, 805–821.PubMedCrossRefGoogle Scholar
  5. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.PubMedCrossRefGoogle Scholar
  6. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.PubMedCrossRefGoogle Scholar
  7. Birbaumer, N., Viet, R., Lotze, M., Erb, M., Hermann, C., & Grodd, W. (2005). Deficient fear conditioning in psychopathy. Archives of General Psychiatry, 62, 799–805.PubMedCrossRefGoogle Scholar
  8. Buchel, C., Dolan, R. J., Armony, J. L., & Friston, K. J. (1999). Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. Journal of Neuroscience, 19, 10869–10876.PubMedGoogle Scholar
  9. Caldwell, M., Skeem, J., Salekin, R., & Van Rybroek, G. (2006a). Treatment response of adolescent offenders with psychopathy features. Criminal Justice & Behavior, 33, 571–596.CrossRefGoogle Scholar
  10. Caldwell, M. F., Vitacco, M., & Van Rybroek, G. J. (2006b). Are violent delinquents worth treating? A cost-benefit analysis. Journal of Research in Crime and Delinquency, 43, 148–168.CrossRefGoogle Scholar
  11. Cleckley, H. (1976). The mask of sanity (5th ed.). St. Louis: Mosby.Google Scholar
  12. Cohen, M. A., Miller, T., & Rossman, S. (1994). The costs and consequences of violent behavior in the United States. In A. J. Reiss Jr. & J. A. Roth (Eds.), Understanding and preventing violence, Volume 4: Consequences and control (pp. 216–315). Washington, DC: National Academy Press.Google Scholar
  13. De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., & Barker, G. J. (2009). Size matters: increased grey matter in boys with conduct problems and callous unemotional traits. Brain, 132, 843–852.PubMedCrossRefGoogle Scholar
  14. De Oliveira-Souza, R., Hare, R. D., Bramati, I. E., Garrido, G. J., Ignacio, F. A., Tovar-Moll, F., et al. (2008). Psychopathy as a disorder of the moral brain: Fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. NeuroImage, 40, 1202–1213.PubMedCrossRefGoogle Scholar
  15. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic gray matter in criminal psychopathy. Journal of Abnormal Psychology, 121, 649–658.PubMedCrossRefGoogle Scholar
  16. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2013). Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. Journal of the American Academy of Child & Adolescent Psychiatry, 52, 94–103.CrossRefGoogle Scholar
  17. Fairchild, G., Hagan, C. C., Walsh, N. D., Passamonti, L., Calder, A. J., & Goodyer, I. M. (2013). Brain structure abnormalities in adolescent girls with conduct disorder. Journal of Child Psychology and Psychiatry, 54, 86–95.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Federal Bureau of Investigation. (1996). Uniform Crime Report. Washington, DC: GPO.Google Scholar
  19. Federal Bureau of Investigation. (2010). Uniform Crime Report. Washington, DC: GPO.Google Scholar
  20. Fink, B. C., Tant, A. S., Tremba, K., & Kiehl, K. A. (2012). Assessment of psychopathic traits in an incarcerated adolescent sample: a methodological comparison. Journal of Abnormal Child Psychology, 40, 971–986.PubMedCrossRefGoogle Scholar
  21. Forth, A. E., Kosson, D. S., & Hare, R. D. (2003). The psychopathy checklist: Youth version. Toronto: Multi-Health Systems.Google Scholar
  22. Frick, P. J., O’Brien, B. S., Wootton, J. M., & McBurnett, K. (1994). Psychopathy and conduct problems in children. Journal of Abnormal Psychology, 103, 700–707.PubMedCrossRefGoogle Scholar
  23. Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 77–85.PubMedCrossRefGoogle Scholar
  24. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 21–36.PubMedCrossRefGoogle Scholar
  25. Hare, R. D. (1991). Manual for the Hare Psychopathy Checklist-Revised. Toronto: Multi-Health Systems.Google Scholar
  26. Hare, R. D. (2003). Manual for the Hare Psychopathy Checklist-Revised (2nd ed.). Toronto: Multi-Health Systems.Google Scholar
  27. Harenski, C. L., Harenski, K. A., Shane, M. S., & Kiehl, K. A. (2010). Aberrant neural processing of moral violations in criminal psychopaths. Journal of Abnormal Psychology, 119, 863–874.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Harpur, T. J., Hare, R. D., & Hakstian, A. R. (1989). Two factor conceptualization of psychopathy. Psychological Assessment, 1, 6–17.CrossRefGoogle Scholar
  29. Hemphill, J. F., Hare, R. D., & Wong, S. (1998). Psychopathy and recidivism. Legal Criminological Psychology, 3, 139–170.CrossRefGoogle Scholar
  30. Huebner, T., Vloet, T. D., Marx, I., Konrad, K., Fink, G. R., & Herpertz, S. C. (2008). Morphometric brain abnormalities in boys with conduct disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 47, 540–547.PubMedCrossRefGoogle Scholar
  31. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., & Moreci, P. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children Present and Lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.PubMedCrossRefGoogle Scholar
  32. Kennealy, P. J., Hicks, B. M., & Patrick, C. J. (2007). Validity of factors of the Psychopathy Checklist—Revised in female prisoners: Discriminant relations with antisocial behavior, substance abuse, and personality. Assessment, 14, 323–340.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy. Psychiatry Research, 142, 107–128.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kiehl, K. A., Hare, R. D., McDonald, J. J., & Brink, J. (1999). Semantic and affective processing in psychopaths. Psychophysiology, 36, 765–774.PubMedCrossRefGoogle Scholar
  35. Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., et al. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50, 677–684.PubMedCrossRefGoogle Scholar
  36. King, N. S., Crawford, S., Wenden, F. J., Moss, N. E. G., & Wade, D. T. (1995). The Rivermead Post Concussion Symptoms Questionnaire – A measure of symptoms commonly experienced after head-injury and its reliability. Journal of Neurology, 242, 587–592.PubMedCrossRefGoogle Scholar
  37. Kruesi, M. J., Casanova, M. F., Mannheim, G., & Johnson-Bilder, A. (2004). Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Research: Neuroimaging, 132, 1–11.PubMedCrossRefGoogle Scholar
  38. Laakso, M. P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., & Aronen, H. J. (2001). Psychopathy and the posterior hippocampus. Behavioural Brain Research, 118, 187–193.PubMedCrossRefGoogle Scholar
  39. Lahey, B. B., & Kazdin, A. E. (1990). Advances in clinical child psychology. New York: Plenum Press.CrossRefGoogle Scholar
  40. Malloy, P., Bihrle, A., Duffy, J., & Cimino, C. (1993). The orbitomedial frontal syndrome. Archives of Clinical Neuropsychology, 8, 185–201.PubMedCrossRefGoogle Scholar
  41. McLellan, A. T., Kushner, H., Metzger, D., Peters, R., Smith, I., & Grissom, G. (1992). The fifth edition of the addiction severity index. Journal of Substance Abuse Treatment, 9, 199–213.PubMedCrossRefGoogle Scholar
  42. Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 40–48.PubMedCrossRefGoogle Scholar
  43. Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior. Psychological Review, 100, 674–701.PubMedCrossRefGoogle Scholar
  44. Muller, J. L., Ganssbauer, S., Sommer, M., Dohnel, K., Weber, T., Schmidt-Wilcke, T., et al. (2008). Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry. Psychiatry Research: Neuroimaging, 163, 213–222.PubMedCrossRefGoogle Scholar
  45. Muller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., & Roder, C. H. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biological Psychiatry, 542, 152–162.CrossRefGoogle Scholar
  46. Newman, J. P., Patterson, C. M., & Kosson, D. S. (1987). Response perseveration in psychopaths. Journal of Abnormal Psychology, 96, 145–148.PubMedCrossRefGoogle Scholar
  47. O’Neill, M. L., Lidz, V., & Heilbrun, K. (2003). Adolescents with psychopathic characteristics in a substance abusing cohort. Law and Human Behavior, 27, 299–313.PubMedCrossRefGoogle Scholar
  48. Pell, G. S., Briellmann, R. S., Chan, C. H., Pardoe, H., Abbott, D. F., & Jackson, G. D. (2008). Selection of the control group for VBM analysis. NeuroImage, 41, 1324–1335.PubMedCrossRefGoogle Scholar
  49. Puzzanchera, C., Adams, B., & Sickmund, M. (2011). Juvenile court statistics 2008. Pittsburgh: National Center for Juvenile Justice.Google Scholar
  50. Ryan, R., Lopez, S., & Werth, T. (1999). Development and preliminary validation of a Satz-Mogel short form of the WAIS-III in a sample of persons with substance abuse disorders. International Journal of Neuroscience, 98, 131–140.PubMedCrossRefGoogle Scholar
  51. Sattler, J. M., & Dumont, R. (2004). Assessment of children: WISC-IV and WPPSIIII supplement. San Diego: Sattler Publishing Company.Google Scholar
  52. Silverthorn, P., & Frick, P. J. (1999). Developmental pathways to antisocial behavior: the delayed-onset pathway in girls. Development and Psychopathology, 11, 101–126.PubMedCrossRefGoogle Scholar
  53. Smith, S. S., & Newman, J. P. (1990). Alcohol and drug abuse-dependence disorders in psychopathic and nonpsychopathic criminal offenders. Journal of Abnormal Psychology, 99, 430–439.PubMedCrossRefGoogle Scholar
  54. Sterzer, P., Stadler, C., Poustka, F., & Kleinschmidt, A. (2007). A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. NeuroImage, 37, 335–342.PubMedCrossRefGoogle Scholar
  55. Sutton, S. K., Vitale, J. E., & Newman, J. P. (2002). Emotion among females with psychopathy during picture presentation. Journal of Abnormal Psychology, 111, 610–619.PubMedCrossRefGoogle Scholar
  56. Tanabe, J., Tregellas, J. R., Dalwani, M., Thompson, L., Owens, E., Crowley, T., et al. (2009). Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biological Psychiatry, 65, 160–164.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Tiihonen, J., Rossi, R., Laakso, M. P., Hodgins, S., Testa, C., & Perez, J. (2008). Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Research: Neuroimaging, 163, 201–212.PubMedCrossRefGoogle Scholar
  58. Veit, R., Flor, H., Erb, M., Hermann, C., Lotze, M., Grodd, W., & Birbaumer, N. (2002). Brain circuits involved in emotional learning in antisocial behavior and social phobia in humans. Neuroscience Letters, 328, 233–236.Google Scholar
  59. Vitale, J. E., Brinkley, C. A., Hiatt, K. D., & Newman, J. P. (2007). Abnormal selective attention in psychopathic female offenders. Neuropsychology, 21, 301–312.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Vitale, J. E., & Newman, J. P. (2001). Response perseveration in psychopathic women. Journal of Abnormal Psychology, 110, 644–647.PubMedCrossRefGoogle Scholar
  61. Ward, D.B. (2000). Simultaneous inference for fMRI data. Milwaukee, WI: AuthorGoogle Scholar
  62. Wechsler, D. (1997). Wechsler Adult Intelligence Scale. New York: Psychological Corporation.Google Scholar
  63. Wechsler, D. (2003). Wechlser Intelligence Scale for Children—Fourth Edition. San Antonio: Psychological Corporation.Google Scholar
  64. Yang, M., Wong, S. C. P., & Coid, J. (2010). The efficacy of violence prediction. Psychological Bulletin, 136, 740–767.PubMedCrossRefGoogle Scholar
  65. Yang, Y., Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2005). Volume reduction in prefrontal gray matter in unsuccessful criminal psychopaths. Biological Psychiatry, 57, 1103–1108.PubMedCrossRefGoogle Scholar
  66. Yuan, Y., Zhu, Z. D., Shi, J. F., Zou, Z. L., Yuan, F., Liu, Y. J., et al. (2009). Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain and Cognition, 71, 223–228.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lora M. Cope
    • 1
    • 2
    • 5
  • Elsa Ermer
    • 3
  • Prashanth K. Nyalakanti
    • 2
  • Vince D. Calhoun
    • 2
    • 4
  • Kent A. Kiehl
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.The Mind Research Network and Lovelace Biomedical and Environmental Research InstituteAlbuquerqueUSA
  3. 3.Derner Institute Psychology DepartmentAdelphi UniversityGarden CityUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA
  5. 5.Addiction Research Center and Department of PsychiatryThe University of MichiganAnn ArborUSA

Personalised recommendations