Advertisement

Journal of Abnormal Child Psychology

, Volume 41, Issue 8, pp 1267–1277 | Cite as

Comparisons Across Depression Assessment Instruments in Adolescence and Young Adulthood: An Item Response Theory Study Using Two Linking Methods

  • Thomas M. Olino
  • Lan Yu
  • Dana L. McMakin
  • Erika E. Forbes
  • John R. Seeley
  • Peter M. Lewinsohn
  • Paul A. Pilkonis
Article

Abstract

Item response theory (IRT) methods allow for comparing the utility of instruments based on the range and precision of severity assessed by each instrument. As adolescents and young adults can display rapid increases in depressive symptoms, there is a crucial need to sensitively assess mild elevations of symptoms (as an index of initial risk) and moderate-severe symptoms (as an indicator of treatment disposition). We compare the information assessed by the Beck Depression Inventory (BDI) to the newly developed Patient Reported Outcome Measurement Information System – Depression measure (PROMIS-Depression), and the Center for Epidemiologic Studies – Depression (CES-D) scale. The present work is based on data from two fully independent samples of community adolescents and young adults. One sample completed the BDI and CES-D (n = 1,482) and the second sample (n = 673) completed the PROMIS-Depression measure and the CES-D. Using two different IRT-based linking methods, (1) equating based on common items and (2) concurrent calibration methods, analyses revealed that the PROMIS-Depression measure assessed information over the widest range of depressive severity with greatest measurement precision relative to the other instruments. This was true for both the 28-item and 8-item versions of the PROMIS-Depression measure. Findings suggest that the PROMIS-Depression measure assessed depression severity with greatest precision and over the widest severity range of the assessed instruments. However, future work is necessary to demonstrate that the PROMIS-Depression measure has reliable associations with external criteria and is sensitive to treatment response.

Keywords

Adolescent depression assessment Item response theory Psychometrics 

Notes

Acknowledgments

The present work was supported by K01 MH092603 (TMO) and R01 MH40501 (PML). The authors have no other financial disclosures. The authors report no conflicts of interest.

References

  1. Angold, A., Costello, E. J., Messer, S. C., & Pickles, A. (1995). Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research, 5, 237–249.Google Scholar
  2. Baker, F. B. (2001). The basics of item response theory. In ERIC clearinghouse on assessment and evaluation. College Park, MD: University of Maryland. Available at: http://ericae.net/irt/baker
  3. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.PubMedCrossRefGoogle Scholar
  4. Beck, A. T., Steer, R. A., & Carbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clinical Psychology Review, 8, 77–100.CrossRefGoogle Scholar
  5. Carmody, T. J., Rush, A., Bernstein, I. H., Brannan, S., Husain, M. M., & Trivedi, M. H. (2006). Making clinicians lives easier: guidance on use of the QIDS self-report in place of the MADRS. Journal of Affective Disorders, 95, 115–118.PubMedCrossRefGoogle Scholar
  6. DeWitt, E. M., Stucky, B. D., Thissen, D., Irwin, D. E., Langer, M., Varni, J. W., et al. (2011). Construction of the eight-item patient-reported outcomes measurement information system pediatric physical function scales: built using item response theory. Journal of Clinical Epidemiology, 64, 794–804.PubMedCrossRefGoogle Scholar
  7. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  8. Fournier, J. C., DeRubeis, R. J., Hollon, S. D., Dimidjian, S., Amsterdam, J. D., Shelton, R. C., et al. (2010). Antidepressant drug effects and depression severity. Journal of the American Medical Association, 303, 47–53.PubMedCrossRefGoogle Scholar
  9. Gibbons, R. D., Weiss, D. J., Pilkonis, P. A., Frank, E., Moore, T., Kim, J. B., et al. (2012). Development of a computerized adaptive test for depression. Archives of General Psychiatry, 69, 1104–1112.PubMedCrossRefGoogle Scholar
  10. Hankin, B. L., Abramson, L. Y., Moffitt, T. E., Silva, P. A., McGee, R., & Angell, K. E. (1998). Development of depression from preadolescence to young adulthood: emerging gender differences in a 10-year longitudinal study. Journal of Abnormal Psychology, 107, 128–140.PubMedCrossRefGoogle Scholar
  11. Irwin, D. E., Stucky, B., Langer, M. M., Thissen, D., DeWitt, E. M., Lai, J. S., et al. (2010). An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. Quality of Life Research, 19, 595–607.PubMedCrossRefGoogle Scholar
  12. Irwin, D. E., Gross, H. E., Stucky, B. D., Thissen, D., DeWitt, E. M., Lai, J. S., et al. (2012). Development of six PROMIS pediatrics proxy-report item banks. Health and Quality of Life Outcomes, 10, 22.PubMedCrossRefGoogle Scholar
  13. Klein, D. N., Dougherty, L. R., & Olino, T. M. (2005). Toward guidelines for evidence-based assessment of depression in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34, 412–432.PubMedCrossRefGoogle Scholar
  14. Klein, D. N., Shankman, S. A., Lewinsohn, P. M., & Seeley, J. R. (2009). Subthreshold depressive disorder in adolescents: predictors of escalation to full-syndrome depressive disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 703–710.PubMedCrossRefGoogle Scholar
  15. Kovacs, M. (1992). Children’s depression inventory. North Tonawanda: Multi-Health System.Google Scholar
  16. Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal Medicine, 16, 606–613.PubMedCrossRefGoogle Scholar
  17. Lewinsohn, P. M., Hops, H., Roberts, R. E., Seeley, J. R., & Andrews, J. A. (1993). Adolescent psychopathology: I. Prevalence and incidence of depression and other DSM-III–R disorders in high school students. Journal of Abnormal Psychology, 102, 133–144.PubMedCrossRefGoogle Scholar
  18. Lewinsohn, P. M., Clarke, G. N., Seeley, J. R., & Rohde, P. (1994). Major depression in community adolescents: age at onset, episode duration, and time to recurrence. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 809–818.PubMedCrossRefGoogle Scholar
  19. Lipsman, N., & Lozano, A. M. (2011). The most cited works in major depression: the ‘citation classics’. Journal of Affective Disorders, 134, 39–44.PubMedCrossRefGoogle Scholar
  20. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale: Lawrence Erlbaum.Google Scholar
  21. McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82.PubMedCrossRefGoogle Scholar
  22. Muthén, L. K., & Muthén, B. O. (1998–2010). Mplus user’s guide (6th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  23. Olino, T. M., Yu, L., Klein, D. N., Rohde, P., Seeley, J. R., Pilkonis, P. A., et al. (2012). Measuring depression using item response theory: an examination of three measures of depressive symptomatology. International Journal of Methods in Psychiatric Research, 21, 76–85.PubMedCrossRefGoogle Scholar
  24. Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the patient-reported outcomes measurement information system (PROMIS®): depression, anxiety, and anger. Assessment, 18, 263–283.PubMedCrossRefGoogle Scholar
  25. Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.CrossRefGoogle Scholar
  26. Reise, S. P., & Waller, N. G. (1990). Fitting the two-parameter model to personality data: the parameterization of the multidimensional personality questionnaire. Applied Psychological Measurement, 14, 45–58.CrossRefGoogle Scholar
  27. Roberts, R. E., Lewinsohn, P. M., & Seeley, J. R. (1991). Screening for adolescent depression: a comparison of depression scales. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 58–66.PubMedCrossRefGoogle Scholar
  28. Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein, D. N., et al. (2003). The 16-item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biological Psychiatry, 54, 573–583.PubMedCrossRefGoogle Scholar
  29. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.Google Scholar
  30. Santor, D. A., Zuroff, D. C., Ramsay, J. O., Cervantes, P., & Palacios, J. (1995). Examining scale discriminability in the BDI and CES-D as a function of depressive severity. Psychological Assessment, 7, 131–139.CrossRefGoogle Scholar
  31. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin, 86, 420–428.PubMedCrossRefGoogle Scholar
  32. Steele, R. G., Little, T. D., Ilardi, S. S., Forehand, R., Brody, G. H., & Hunter, H. L. (2006). A confirmatory comparison of the factor structure of the children’s depression inventory between European American and African American youth. Journal of Child and Family Studies, 15, 773–788.CrossRefGoogle Scholar
  33. Steiger, J. H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research, 25, 173–180.CrossRefGoogle Scholar
  34. Thissen, D., Chen, W.-H., & Bock, R. D. (2003). MULTILOG 7 for windows: Multiple-category item analysis and test scoring using item response theory [computer software]. Lincolnwood: Scientific Software International, Inc.Google Scholar
  35. Twenge, J. M., & Nolen-Hoeksema, S. (2002). Age, gender, race, socioeconomic status, and birth cohort difference on the children’s depression inventory: a meta-analysis. Journal of Abnormal Psychology, 111, 578.PubMedCrossRefGoogle Scholar
  36. Uher, R., Farmer, A., Maier, W., Rietschel, M., Hauser, J., Marusic, A., et al. (2008). Measuring depression: comparison and integration of three scales in the GENDEP study. Psychological Medicine, 38, 289–300.PubMedCrossRefGoogle Scholar
  37. Yu, L., Buysse, D. J., Germain, A., Moul, D. E., Stover, A., Dodds, N. E., et al. (2011). Development of short forms from the PROMIS™ sleep disturbance and sleep-related impairment item banks. Behavioral Sleep Medicine, 10, 6–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thomas M. Olino
    • 1
  • Lan Yu
    • 1
  • Dana L. McMakin
    • 1
  • Erika E. Forbes
    • 1
  • John R. Seeley
    • 2
  • Peter M. Lewinsohn
    • 2
  • Paul A. Pilkonis
    • 1
  1. 1.Department of PsychiatryUniversity of PittsburghPittsburghUSA
  2. 2.Oregon Research InstituteEugeneUSA

Personalised recommendations