Journal of Abnormal Child Psychology

, Volume 40, Issue 4, pp 645–654 | Cite as

Processing Speed and Neurodevelopment in Adolescent-Onset Psychosis: Cognitive Slowing Predicts Social Function

  • Peter Bachman
  • Tara A. Niendam
  • Maria Jalbrzikowkski
  • Chan Y. Park
  • Melita Daley
  • Tyrone D. Cannon
  • Carrie E. Bearden
Article

Abstract

Onset of psychosis may be associated with abnormal adolescent neurodevelopment. Here we examined the neurocognitive profile of first-episode, adolescent onset psychosis (AOP) as compared to typically developing adolescents, and asked whether neurocognitive performance varied differentially as a function of age in the cases compared with controls. A comprehensive neuropsychological battery was administered to 35 patients experiencing a first-episode of a DSM-IV psychotic disorder and to 31 matched controls. Clinicians also rated subjects’ social and role functioning, both at the time of neuropsychological assessment and 1 year later. Although patients displayed a wide range of impairments relative to controls, their most pronounced deficits included verbal memory, sensorimotor dexterity and cognitive processing speed. Among these, only processing speed showed a significant group-by-age interaction, consistent with an aberrant developmental course among AOP patients. Processing speed also accounted for substantial variance in other areas of deficit, and predicted social functioning 1 year later. AOP patients fail to show normal age-related increases in processing speed, which in turn predicts poorer functional outcomes. This pattern is consistent with the view that adolescent brain developmental processes, such as myelination, may be disrupted in these patients.

Keywords

Schizophrenia Adolescence Neurodevelopment Outcome Cognitive processing speed 

Supplementary material

10802_2011_9592_MOESM1_ESM.doc (74 kb)
ESM 1(DOC 74 kb)

References

  1. Bachman, P., Reichenberg, A., Rice, P., Woolsey, M., Chaves, O., Martinez, D., et al. (2010). Deconstructing processing speed deficits in schizophrenia: application of a parametric digit symbol coding test. Schizophrenia Research, 118(1–3), 6–11.PubMedCrossRefGoogle Scholar
  2. Ballageer, T., Malla, A., Manchanda, R., Takhar, J., & Haricharan, R. (2005). Is adolescent-onset first-episode psychosis different from adult onset? Journal of the American Academy of Child and Adolescent Psychiatry, 44(8), 782–789.PubMedCrossRefGoogle Scholar
  3. Bearden, C. E., & Freimer, N. B. (2006). Endophenotypes for psychiatric disorders: ready for primetime? Trends in Genetics, 22(6), 306–313. Google Scholar
  4. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck depression inventory—II. San Antonio, TX: Psychological Corporation.Google Scholar
  5. Benton, A. L., & Hamsher, K. (1976). Multilingual aphasia examination. Iowa City, IA: AJA.Google Scholar
  6. Berger, S. G., Chibnall, J. T., & Gfeller, J. D. (1997). Construct validity of the computerized version of the category test. Journal of Clinical Psychology, 53(7), 723–726.PubMedCrossRefGoogle Scholar
  7. Brebion, G., Amador, X., Smith, M. J., & Gorman, J. M. (1998). Memory impairment and schizophrenia: the role of processing speed. Schizophrenia Research, 30(1), 31–39.PubMedCrossRefGoogle Scholar
  8. Cervellione, K. L., Burdick, K. E., Cottone, J. G., Rhinewine, J. P., & Kumra, S. (2007). Neurocognitive deficits in adolescents with schizophrenia: longitudinal stability and predictive utility for short-term functional outcome. Journal of the American Academy of Child and Adolescent Psychiatry, 46(7), 867–878.PubMedCrossRefGoogle Scholar
  9. Cohen, M. J. (1997). Children’s memory scale. San Antonio, TX: Psychological Corporation, Harcourt, Brace & Co.Google Scholar
  10. Cornblatt, B. A., Auther, A. M., Niendam, T., Smith, C. W., Zinberg, J., Bearden, C. E., et al. (2007). Preliminary findings for two new measures of social and role functioning in the prodromal phase of schizophrenia. Schizophrenia Bulletin, 33(3), 688–702.PubMedCrossRefGoogle Scholar
  11. Davenport, N. D., Karatekin, C., White, T., & Lim, K. O. (2011). Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia. Psychiatric Research, 181(3), 193–198.Google Scholar
  12. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test (2nd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
  13. DeLisi, L. E. (1992). The significance of age of onset for schizophrenia. Schizophrenia Bulletin, 18(2), 209–215.PubMedGoogle Scholar
  14. Dickinson, D. (2008). Digit symbol coding and general cognitive ability in schizophrenia: worth another look? British Journal of Psychiatry, 193(5), 354–356.Google Scholar
  15. Ferguson, C. J. (2009). An effect size primer: a guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538.CrossRefGoogle Scholar
  16. Frangou, S., Hadjulis, M., & Vourdas, A. (2008). The Maudsley early onset schizophrenia study: cognitive function over a 4-year follow-up period. Schizophrenia Bulletin, 34(1), 52–59.PubMedCrossRefGoogle Scholar
  17. Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological Psychology, 54(1–3), 1–34.PubMedCrossRefGoogle Scholar
  18. Hafner, H., Maurer, K., Loffler, W., & Riecher-Rossler, A. (1993). The influence of age and sex on the onset and early course of schizophrenia. The British Journal of Psychiatry, 162, 80–86.PubMedCrossRefGoogle Scholar
  19. Karlsgodt, K. H., Sun, D., Jimenez, A. M., Lutkenhoff, E. S., Willhite, R., van Erp, T. G., et al. (2008a). Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Development and Psychopathology, 20(4), 1297–1327.CrossRefGoogle Scholar
  20. Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008b). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63(5), 512–518.CrossRefGoogle Scholar
  21. Karlsgodt, K. H., Niendam, T. A., Bearden, C. E., & Cannon, T. D. (2009). White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biological Psychiatry, 66(6), 562–569.PubMedCrossRefGoogle Scholar
  22. Lezak, M. D. (1995). Neuropsychological assessment. New York, NY: Oxford Univeristy Press.Google Scholar
  23. Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., et al. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neurosciences, 31(5), 234–242.PubMedCrossRefGoogle Scholar
  24. Lukoff, D., Liberman, R. P., & Nuechterlein, K. H. (1986). Symptom monitoring in the rehabilitation of schizophrenic patients. Schizophrenia Bulletin, 12(4), 578–602.PubMedGoogle Scholar
  25. Maxwell, M. E. (1992). Maual for the family interview for genetic studies (FIGS). Bethesda, MD: Clinical Neurogenetics Branch, Intramural Research Program, National Institute of Mental Health.Google Scholar
  26. Meltzer, H. Y., Rabinowitz, J., Lee, M. A., Cola, P. A., Ranjan, R., Findling, R. L., et al. (1997). Age at onset and gender of schizophrenic patients in relation to neuroleptic resistance. The American Journal of Psychiatry, 154(4), 475–482.PubMedGoogle Scholar
  27. Miller, T. J., McGlashan, T. H., Rosen, J. L., Somjee, L., Markovich, P. J., Stein, K., et al. (2002). Prospective diagnosis of the initial prodrome for schizophrenia based on the Structured Interview for Prodromal Syndromes: preliminary evidence of interrater reliability and predictive validity. The American Journal of Psychiatry, 159(5), 863–865.PubMedCrossRefGoogle Scholar
  28. Nestor, P. G., Kubicki, M., Niznikiewicz, M., Gurrera, R. J., McCarley, R. W., & Shenton, M. E. (2008). Neuropsychological disturbance in schizophrenia: a diffusion tensor imaging study. Neuropsychology, 22(2), 246–254.PubMedCrossRefGoogle Scholar
  29. Niendam, T. A., Bearden, C. E., Zinberg, J., Johnson, J. K., O’Brien, M., & Cannon, T. D. (2007). The course of neurocognition and social functioning in individuals at ultra high risk for psychosis. Schizophrenia Bulletin, 33(3), 772–781.PubMedCrossRefGoogle Scholar
  30. Øie, M., Sundet, K., & Rund, B. R. (2010). Neurocognitive decline in early-onset schizophrenia compared with ADHD and normal controls: evidence from a 13-year follow-up study. Schizophrenia Bulletin, 36(3), 557–565.CrossRefGoogle Scholar
  31. Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychological Methods, 8(4), 434–447.PubMedCrossRefGoogle Scholar
  32. Pantelis, C., Yucel, M., Bora, E., Fornito, A., Testa, R., Brewer, W. J., et al. (2009). Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target. Neuropsychology Review, 19(3), 385–398.PubMedCrossRefGoogle Scholar
  33. Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9(12), 947–957.PubMedGoogle Scholar
  34. Piskulic, D., Addington, J., Auther, A., & Cornblatt, B. A. (2011). Using the global functioning social and role scales in a first-episode sample. Early Intervention Psychiatry.Google Scholar
  35. Rajji, T. K., Ismail, Z., & Mulsant, B. H. (2009). Age at onset and cognition in schizophrenia: meta-analysis. The British Journal of Psychiatry, 195(4), 286–293.PubMedCrossRefGoogle Scholar
  36. Reitan, R. M. (1985). Relationships between measures of brain functions and general intelligence. Journal of Clinical Psychology, 41(2), 245–253.PubMedCrossRefGoogle Scholar
  37. Rodriguez-Sanchez, J. M., Crespo-Facorro, B., Gonzalez-Blanch, C., Perez-Iglesias, R., & Vazquez-Barquero, J. L. (2007). Cognitive dysfunction in first-episode psychosis: the processing speed hypothesis. The British Journal of Psychiatry. Supplement, 51, s107–s110.PubMedCrossRefGoogle Scholar
  38. Rypma, B., & Prabhakaran, V. (2009). When less is more and when more is more: the mediating roles of capacity and speed in brain-behavior efficiency. Intelligence, 37(2), 207–222.PubMedCrossRefGoogle Scholar
  39. Schimmelmann, B. G., Conus, P., Cotton, S., McGorry, P. D., & Lambert, M. (2007). Pre-treatment, baseline, and outcome differences between early-onset and adult-onset psychosis in an epidemiological cohort of 636 first-episode patients. Schizophrenia Research, 95(1–3), 1–8.PubMedCrossRefGoogle Scholar
  40. Shaw, P., Gogtay, N., & Rapoport, J. (2010). Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories. Human Brain Mapping, 31(6), 917–925.PubMedCrossRefGoogle Scholar
  41. Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1992). The structured clinical interview for DSM-III-R (SCID). I: history, rationale, and description. Archives of General Psychiatry, 49(8), 624–629.PubMedCrossRefGoogle Scholar
  42. Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939.PubMedCrossRefGoogle Scholar
  43. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah, New Jersey: Lawrence Erlbaum Associate.Google Scholar
  44. Turken, A., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. (2008). Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. NeuroImage, 42(2), 1032–1044.PubMedCrossRefGoogle Scholar
  45. Ventura, J., Liberman, R. P., Green, M. F., Shaner, A., & Mintz, J. (1998). Training and quality assurance with the Structured Clinical Interview for DSM-IV (SCID-I/P). Psychiatry Research, 79(2), 163–173.PubMedCrossRefGoogle Scholar
  46. Waber, D. P., De Moor, C., Forbes, P. W., Almli, C. R., Botteron, K. N., Leonard, G., et al. (2007). The NIH MRI study of normal brain development: performance of a population based sample of healthy children aged 6 to 18 years on a neuropsychological battery. Journal of the International Neuropsychological Society, 13(5), 729–746.PubMedCrossRefGoogle Scholar
  47. Wechsler, D. (1997). Wechsler memory scale-third edition-(WMS-III). San Antonio, TX: Harcourt Assessment.Google Scholar
  48. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: Harcourt Assessment.Google Scholar
  49. White, T., Ho, B. C., Ward, J., O’Leary, D., & Andreasen, N. C. (2006). Neuropsychological performance in first-episode adolescents with schizophrenia: a comparison with first-episode adults and adolescent control subjects. Biological Psychiatry, 60(5), 463–471.PubMedCrossRefGoogle Scholar
  50. Woodberry, K. A., Giuliano, A. J., & Seidman, L. J. (2008). Premorbid IQ in schizophrenia: a meta-analytic review. The American Journal of Psychiatry, 165(5), 579–587.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peter Bachman
    • 1
  • Tara A. Niendam
    • 2
  • Maria Jalbrzikowkski
    • 3
  • Chan Y. Park
    • 3
  • Melita Daley
    • 1
  • Tyrone D. Cannon
    • 1
    • 3
  • Carrie E. Bearden
    • 1
    • 3
  1. 1.Semel Institute of Neuroscience & Human Behavior, Department of Psychiatry & Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of Psychiatry and Behavioral SciencesUniversity of California - DavisSacramentoUSA
  3. 3.Department of PsychologyUniversity of California - Los AngelesLos AngelesUSA

Personalised recommendations