Journal of Abnormal Child Psychology

, Volume 39, Issue 4, pp 553–561 | Cite as

The Dimensional Nature of Externalizing Behaviors in Adolescence: Evidence from a Direct Comparison of Categorical, Dimensional, and Hybrid Models

  • Kate E. Walton
  • Johan Ormel
  • Robert F. Krueger


Researchers have recognized the importance of developing an accurate classification system for externalizing disorders, though much of this work has been framed by a priori preferences for categorical vs. dimensional constructs. Newer statistical technologies now allow categorical and dimensional models of psychopathology to be compared empirically. In this study, we directly compared the fit of categorical and dimensional models of externalizing behaviors in a large and representative community sample of adolescents at two time points separated by nearly 2.5 years (N = 2027; mean age at Time 1 = 11.09 years; 50.8% female). Delinquent and aggressive behaviors were assessed with child and parent Child Behavior Checklist reports. Latent trait, latent class, and factor mixture models were fit to the data, and at both time points, the latent trait model provided the best fit to the data. The item parameters were inspected and interpreted, and it was determined that the items were differentially sensitive across all regions of the dimension. We conclude that classification models can be based on empirical evidence rather than a priori preferences, and while current classification systems conceptualize externalizing problems in terms of discrete groups, they can be better conceptualized as dimensions.


Externalizing Latent class analysis Item response theory Factor mixture modeling 


  1. Achenbach, T. M. (1991a). Manual for the child behavior checklist/4-18 and 1991 profile. Burlington: University of Vermont.Google Scholar
  2. Achenbach, T. M. (1991b). Manual for the youth self-report and 1991 profile. Burlington: University of Vermont.Google Scholar
  3. Achenbach, T. M., Krukowski, R. A., Dumenci, L., & Ivanova, M. Y. (2005). Assessment of adult psychopathology: meta-analyses and implications of cross-informant correlations. Psychological Bulletin, 131, 361–382.PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington: Author.Google Scholar
  5. Brownfield, D., & Sorsenson, A. M. (1987). A latent structure analysis of delinquency. Journal of Quantitative Criminology, 3, 103–124.CrossRefGoogle Scholar
  6. Campbell, S. B., Morgan-Lopez, A. A., Cox, M. J., McLoyd, V. C., & National Institute of Child Health and Human Development Early Child Care Research Network. (2009). A latent class analysis of maternal depressive symptoms over 12 years and offspring adjustment in adolescence. Journal of Abnormal Psychology, 118, 479–493.PubMedCrossRefGoogle Scholar
  7. Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion. (2007). Healthy Youth! YRBSS. National trends in risk behavior. Retrieved from
  8. Cooke, D. J., & Michie, C. (1997). An item response theory analysis of the Hare Psychopathy Checklist-Revised. Psychological Assessment, 9, 3–14.CrossRefGoogle Scholar
  9. De Los Reyes, A., & Kazdin, A. E. (2005). Informant discrepancies in the assessment of childhood psychopathology: a critical review, theoretical framework, and recommendations for further study. Psychological Bulletin, 131, 483–509.PubMedCrossRefGoogle Scholar
  10. De Winter, A. F., Oldehinkel, A. J., Veenstra, R., Brunnekreef, J. A., Verhulst, F. C., & Ormel, J. (2005). Evaluation of non-response bias in mental health determinants and outcomes in a large sample of preadolescents. European Journal of Epidemiology, 20, 173–181.PubMedCrossRefGoogle Scholar
  11. Dick, D. M., Aliev, F., Wang, J. C., Grucza, R. A., Schuckit, M., Kuperman, S., et al. (2008). Using dimensional models of externalizing psychopathology to aid in gene identification. Archives of General Psychiatry, 65, 310–318.PubMedCrossRefGoogle Scholar
  12. Duncan, T. E., & Duncan, S. C. (2004). An introduction to latent growth curve modeling. Behavior Therapy, 35, 333–363.CrossRefGoogle Scholar
  13. Eaves, L. J., Silerg, J. L., Hewitt, J. K., Rutter, M., Meyer, J. M., Neale, M. C., et al. (1993). Analyzing twin resemblance in multisymptom data: genetic applications of a latent class model for symptoms of conduct disorder in juvenile boys. Behavior Genetics, 23, 5–19.PubMedCrossRefGoogle Scholar
  14. Farmer, R. F., Seeley, J. R., Kosty, D. B., & Lewinsohn, P. M. (2009). Refinements in the hierarchical structure of externalizing psychiatric disorders: patterns of lifetime liability from mid-adolescence through early adulthood. Journal of Abnormal Psychology, 118, 699–710.PubMedCrossRefGoogle Scholar
  15. Frick, P. J., Cornell, A. H., Barry, C. T., Bodin, S. D., & Dane, H. E. (2003). Callous-unemotional traits and conduct problems in the prediction of conduct problem severity, aggression, and self-report of delinquency. Journal of Abnormal Child Psychology, 31, 457–470.PubMedCrossRefGoogle Scholar
  16. Gelhorn, H., Hartman, C., Sakai, J., Mikulich-Gilbertson, S., Stallings, M., Young, S., et al. (2009). An item response theory analysis of DSM-IV conduct disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 42–50.PubMedCrossRefGoogle Scholar
  17. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park: Sage.Google Scholar
  18. Hudziak, J. J., Achenbach, T. M., Althoff, R. R., & Pine, D. S. (2009). A dimensional approach to developmental psychopathology. In J. E. Helzer, H. C. Kraemer, R. F. Krueger, H. Wittchen, P. S. Sirovatka, & D. A. Regier (Eds.), Dimensional approaches in diagnostic classification: Refining the research agenda for DSM-V (pp. 101–113). Arlington: American Psychiatric Association.Google Scholar
  19. Huisman, M., Oldehinkel, A. J., de Winter, A., Minderaa, R. B., de Bildt, A., Huizink, A. C., et al. (2008). Cohort profile: the Dutch ‘tracking adolescents’ individual lives survey’; TRAILS. International Journal of Epidemiology, 37, 1227–1235.PubMedCrossRefGoogle Scholar
  20. Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929–937.PubMedCrossRefGoogle Scholar
  21. Krueger, R. F., Markon, K. E., Patrick, C. J., & Iacono, W. G. (2005). Externalizing psychopathology in adulthood: a dimensional-spectrum conceptualization and its implications for DSM-V. Journal of Abnormal Psychology, 114, 537–550.PubMedCrossRefGoogle Scholar
  22. Lahey, B. B., & Waldman, I. D. (2003). A developmental propensity model of the origins of conduct problems during childhood and adolescence. In B. B. Lahey, T. E. Moffitt, & A. Caspi (Eds.), Causes of conduct disorder and juvenile delinquency (pp. 76–117). New York: The Guilford.Google Scholar
  23. Lahey, B. B., et al. (1994). DSM-IV field trials for oppositional defiant disorder and conduct disorder in children and adolescents. The American Journal of Psychiatry, 151, 1163–1171.PubMedGoogle Scholar
  24. Lanza, S. T., & Collins, L. M. (2008). A new SAS procedure for latent transition analysis: transitions in dating and sexual risk behavior. Developmental Psychology, 44, 446–456.PubMedCrossRefGoogle Scholar
  25. Laub, J., & Sampson, R. (1994). Unemployment, marital discord, and deviant behavior: The long-term correlates of childhood misbehavior. In T. Hirschi & M. Gottfredson (Eds.), The generality of deviance (pp. 133–161). New Brunswick: Transaction.Google Scholar
  26. Lee, B. R., & Thompson, R. (2009). Examining externalizing behavior trajectories of youth in group homes: is there evidence for peer contagion? Journal of Abnormal Child Psychology, 37, 31–44.PubMedCrossRefGoogle Scholar
  27. Loeber, R., Green, S. M., Lahey, B. B., & Stouthamer-Loeber, M. (1991). Differences and similarities between children, mothers, and teachers as informants on disruptive child behavior. Journal of Abnormal Child Psychology, 19, 75–95.PubMedCrossRefGoogle Scholar
  28. Loken, E. (2004). Using latent class analysis to model temperament types. Multivariate Behavioral Research, 39, 625–652.CrossRefGoogle Scholar
  29. Lubke, G., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: resolution by maximum likelihood. Multivariate Behavioral Research, 41, 499–532.CrossRefGoogle Scholar
  30. Lubke, G. H., Muthén, B., Moilanen, I. K., McGough, J. J., Loo, S. K., Swamson, J. M., et al. (2007). Subtypes versus severity differences in attention-deficit/hyperactivity disorder in the Northern Finnish Birth Cohort. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 1584–1593.PubMedCrossRefGoogle Scholar
  31. Markon, K. E., & Krueger, R. F. (2005). Categorical and continuous models of liability to externalizing disorders. Archives of General Psychiatry, 62, 1352–1359.PubMedCrossRefGoogle Scholar
  32. Markon, K. E., & Krueger, R. F. (2006). Information-theoretic latent distribution modeling: distinguishing discrete and continuous latent variable models. Psychological Methods, 3, 228–243.CrossRefGoogle Scholar
  33. Martino, S. C., Ellickson, P. L., Klein, D. J., McCaffrey, D., & Edelen, M. O. (2008). Multiple trajectories of physical aggression among adolescent boys and girls. Aggressive Behavior, 34, 61–75.PubMedCrossRefGoogle Scholar
  34. McCutcheon, A. L. (1987). Latent class analysis. Newbury Park: Sage.Google Scholar
  35. Moffitt, T. E. (1993). Adolescent-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychological Review, 100, 674–701.PubMedCrossRefGoogle Scholar
  36. Monshouwer, K., Verdurmen, J., van Dorsselaer, S., Smit, E., Gorter, A., & Vollebergh, W. (2008). Jeugd en riskant gedrag 2007. Kerngegevens uit het peilstationsonderzoek scholieren [Adolescents and risk-taking behavior 2007]. Utrecht: Trimbos Instituut.Google Scholar
  37. Muthén, B. (2006). Should substance use disorders be considered as categorical or dimensional? Addiction, 101, 6–16.PubMedCrossRefGoogle Scholar
  38. Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  39. Nock, M. K., Kazdin, A. E., Hiripi, E., & Kessler, R. C. (2006). Prevalence, subtypes, and correlates of DSM-IV conduct disorder in the National Comorbidity Survey Replication. Psychological Medicine, 36, 699–710.PubMedCrossRefGoogle Scholar
  40. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: a monte carlo simulation study. Structural Equation Modeling, 14, 535–569.Google Scholar
  41. Odgers, C. L., Moretti, M. M., Burnette, M. L., Chauhan, P., Waite, D., & Reppucci, N. D. (2007). A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders. Aggressive Behavior, 33, 339–352.PubMedCrossRefGoogle Scholar
  42. Piacentini, J. C., Cohen, P., & Cohen, C. (1992). Combining discrepant diagnostic information from multiple sources: are complex algorithms better than simple ones? Journal of Abnormal Child Psychology, 20, 51–63.PubMedCrossRefGoogle Scholar
  43. Regier, D. A., Narrow, W. E., Kuhl, E. A., & Kupfer, D. J. (2009). The conceptual development of DSM-V. American Journal of Psychiatry, 166, 645–650.PubMedCrossRefGoogle Scholar
  44. Reinecke, J. (2006). Longitudinal analysis of adolescents’ deviant and delinquent behavior: applications of latent class growth curves and growth mixture models. Methodology, 2, 100–112.Google Scholar
  45. Schrum, C. L., & Salekin, R. T. (2006). Psychopathy in adolescent female offenders: an item response theory analysis of the psychopathy checklist: youth version. Behavioral Sciences and the Law, 24, 39–63.PubMedCrossRefGoogle Scholar
  46. Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  47. Siennick, S. E. (2007). The timing and mechanisms of the offending-depression link. Criminology: An Interdisciplinary Journal, 45, 583–615.Google Scholar
  48. Tanner, J., Davies, S., & O’Grady, B. (1999). Whatever happened to yesterday’s rebels? Longitudinal effects of youth delinquency and education and employment. Social Problems, 46, 250–274.CrossRefGoogle Scholar
  49. U.S. Department of Justice, Federal Bureau of Investigation. (2009). Crime in the United States, 2008. Retrieved from
  50. Van den Oord, E. J. C. G., Pickles, A., & Waldman, I. D. (2003). Normal variation and abnormality: an empirical study of the liability distributions underlying depression and delinquency. Journal of Child Psychology and Psychiatry, 44, 180–192.PubMedCrossRefGoogle Scholar
  51. Verhulst, F. C., Van der Ende, J., & Koot, H. M. (1996). Handleiding voor de CBCL/4-18. Afdeling Kinder en Jeugdpsychiatrie, Sophia Kinderziekenhuis/Academisch Ziekenhuis Rotterdam/Erasmus Universiteit Rotterdam.Google Scholar
  52. Walton, K. E., Roberts, B. W., Krueger, R. F., Blonigen, D. M., & Hicks, B. M. (2008). Capturing abnormal personality with normal personality inventories: an item response theory approach. Journal of Personality, 76, 1623–1648.PubMedCrossRefGoogle Scholar
  53. Widiger, T. A., & Samuel, D. B. (2005). Diagnostic categories or dimensions? A question for the diagnostic and statistical manual of mental disorders—5th edn. Journal of Abnormal Psychology, 114, 494–504.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kate E. Walton
    • 1
  • Johan Ormel
    • 2
  • Robert F. Krueger
    • 3
  1. 1.Department of PsychologySt. John’s UniversityJamaicaUSA
  2. 2.Department of PsychiatryUniversity of GroningenGroningenThe Netherlands
  3. 3.Department of PsychologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations