Even-primitive vectors in induced supermodules for general linear supergroups and in costandard supermodules for Schur superalgebras

  • František MarkoEmail author


Let \(G=GL(m|n)\) be the general linear supergroup over an algebraically closed field K of characteristic zero, and let \(G_{ev}=GL(m)\times GL(n)\) be its even subsupergroup. The induced supermodule \(H^0_G(\lambda )\), corresponding to a dominant weight \(\lambda \) of G, can be represented as \(H^0_{G_{ev}}(\lambda )\otimes \Lambda (Y)\), where \(Y=V_m^*\otimes V_n\) is a tensor product of the dual of the natural GL(m)-module \(V_m\) and the natural GL(n)-module \(V_n\), and \(\Lambda (Y)\) is the exterior algebra of Y. For a dominant weight \(\lambda \) of G, we construct explicit \(G_{ev}\)-primitive vectors in \(H^0_G(\lambda )\). Related to this, we give explicit formulas for \(G_{ev}\)-primitive vectors of the supermodules \(H^0_{G_{ev}}(\lambda )\otimes \otimes ^k Y\). Finally, we describe a basis of \(G_{ev}\)-primitive vectors in the largest polynomial subsupermodule \(\nabla (\lambda )\) of \(H^0_G(\lambda )\) (and therefore in the costandard supermodule of the corresponding Schur superalgebra S(m|n)). This yields a description of a basis of \(G_{ev}\)-primitive vectors in arbitrary induced supermodule \(H^0_G(\lambda )\).


General linear supergroup Primitive vectors Schur superalgebra 

Mathematics Subject Classification

Primary 15A15 Secondary 17A70 20G05 15A72 13A50 05E15 



  1. 1.
    Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brualdi, R.A., Schneider, H.: Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley. Linear Algebra Appl. 52/53, 769–791 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brundan, J., Kujawa, J.: A new proof of the Mullineux conjecture. J. Algebraic Combin. 18, 13–39 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Buchsbaum, D.A.: Selections from the letter-place panoply. In: Peeva, I. (ed.) Commutative Algebra, pp. 237–284. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Fulton, W.: Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)Google Scholar
  6. 6.
    Green, J.A.: Polynomial Representations of \(GL(n)\). Lecture Notes in Mathematics, vol. 830. Springer, Berlin (1980)Google Scholar
  7. 7.
    Grosshans, F.D., Rota, G.C., Stein, J.A.: Invariant Theory and Superalgebras. Regional Conference Series in Mathematics, vol. 69. American Mathematical Society, Providence (1987)Google Scholar
  8. 8.
    Grishkov, A.N., Marko, F.: Description of simple modules for Schur superalgebra \(S(2|2)\). Glasg. Math. J. 55(3), 695–719 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Grishkov, A.N., Marko, F., Zubkov, A.N.: Description of costandard modules for Schur superalgebra \(S(2|1)\) in positive characteristic. Linear Multilinear Algebra 59(1), 57–64 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jantzen, J.: Representations of Algebraic Groups. Academic Press, New York (1987)zbMATHGoogle Scholar
  11. 11.
    Kac, V.: Representations of classical lie superalgebras. In: Differential Geometrical Methods in Mathematical Physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977). Lecture Notes in Mathematics, vol. 676, pp. 597–626. Springer, Berlin (1978)Google Scholar
  12. 12.
    Kac, V.: Characters of typical representations of classical Lie superalgebras. Comm. Algebra 5, 889–897 (1977)CrossRefzbMATHGoogle Scholar
  13. 13.
    La Scala, R., Zubkov, A.N.: Costandard modules over Schur superalgebras in characteristic \(p\). J. Algebra Appl. 7(2), 147–166 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Marko, F.: Primitive vectors in induced supermodules for general linear supergroups. J. Pure Appl. Algebra 219(4), 978–1007 (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Marko, F.: Description of costandard modules of Schur superalgebra \(S(3|1)\). Comm. Algebra 41(7), 2665–2697 (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    Marko, F.: Irreducibility of induced modules over general linear group. J. Algebra 494, 92–110 (2018)CrossRefzbMATHGoogle Scholar
  17. 17.
    Marko, F.: Combinatorial aspects of an odd linkage property for supergroups. arXiv:1609.01783 [math.RT]
  18. 18.
    Marko, F., Zubkov, A.N.: Schur superalgebras in characteristic \(p\). Algebr. Represent. Theory 9(1), 1–12 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Marko, F., Zubkov, A.N.: Schur superalgebras in characteristic \(p\), II. Bull. Lond. Math. Soc. 38(1), 99–112 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Marko, F., Zubkov, A.N.: Blocks for general linear supergroup \(GL(m|n)\). Transform. Groups 23(1), 185–215 (2018)CrossRefzbMATHGoogle Scholar
  21. 21.
    Martin, S.: Schur Algebras and Representation Theory. Cambridge Tracts in Mathematics, vol. 112. Cambridge University Press, Cambridge (1993)Google Scholar
  22. 22.
    Muir, N.J.: Polynomial Representations of the General Linear Lie Superalgebras. Ph.D. Thesis, University of London (1991)Google Scholar
  23. 23.
    Taylor, B.D.: A straightening algorithm for row-convex tableaux. J. Algebra 236(1), 155–191 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Taylor, B.D.: Row-convex tableaux and the combinatorics of initial terms, formal power series and algebraic combinatorics (Vienna, 1997). Discrete Math. 217(1–3), 411–427 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    van Leeuwen, M.A.A.: The Littlewood-Richardson rule, and related combinatorics. In: Stembridge, J.R., Thibon, J.-Y., van Leeuwen, M.A.A. (eds.) Interaction of Combinatorics and Representation Theory. Mathematical Society of Japan Memoirs, vol. 11, pp. 95–145. Mathematical Society of Japan, Tokyo (2001)CrossRefGoogle Scholar
  26. 26.
    van Leeuwen, M.A.A.: Tableau algorithms defined naturally for pictures. Discrete Math. 157, 321–362 (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zelevinsky, A.V.: A generalization of the Littlewood–Richardson rule and the Robinson–Schensted–Knuth correspondence. J. Algebra 69(1), 82–94 (1981)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zubkov, A.N.: Some properties of general linear supergroups and of Schur superalgebras. Algebra Logic 45(3), 147–171 (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Zubkov, A.N.: Personal communication (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Penn State HazletonHazletonUSA

Personalised recommendations