Advertisement

Journal of Algebraic Combinatorics

, Volume 50, Issue 3, pp 281–291 | Cite as

A simple counting argument of the irreducible representations of \(\mathsf {SU}(N)\) on mixed product spaces

  • J. Alcock-ZeilingerEmail author
  • H. Weigert
Article

Abstract

That the number of irreducible representations of the special unitary group \(\mathsf {SU}(N)\) on \(V^{\otimes k}\) (which is also the number of Young tableaux with k boxes) is given by the number of involutions in \(S_k\) is a well-known result (see, e.g., Knuth in The art of computer programming, volume 3—sorting and searching, 2nd ed, Addison-Wesley, Boston, 1998 and other standard textbooks). In this paper, we present an alternative proof for this fact using a basis of projection and transition operators (Alcock-Zeilinger and Weigert J Math Phys 58(5):051702, 2017, J Math Phys 58(5):051703, 2017) of the algebra of invariants of \(\mathsf {SU}(N)\) on \(V^{\otimes k}\). This proof is shown to easily generalize to the irreducible representations of \(\mathsf {SU}(N)\) on mixed product spaces \(V^{\otimes m}\otimes \left( V^*\right) ^{\otimes n}\), implying that the number of irreducible representations of \(\mathsf {SU}(N)\) on a product space \(V^{\otimes m}\otimes \left( V^*\right) ^{\otimes n}\) remains unchanged if one exchanges factors V for \(V^*\) and vice versa, as long as the total number of factors remains unchanged, c.f. Corollary 1.

Keywords

Representation theory Tableaux Counting irreducible representations Group theory Special unitary group 

Mathematics Subject Classification

05E10 05E15 20C99 

Notes

Acknowledgements

H.W. is supported by South Africa’s National Research Foundation under CPRR Grant Number 90509. J.A-Z. was supported (in sequence) by the Postgraduate Funding Office of the University of Cape Town (2014), the National Research Foundation (2015) and the Science Faculty PhD Fellowship of the University of Cape Town (2016–2017).

References

  1. 1.
    Alcock-Zeilinger, J., Weigert, H.: A Compact Construction Algorithm for the Singlets of \({\sf SU}(N)\) Over Mixed Product Spaces (in preparation) Google Scholar
  2. 2.
    Alcock-Zeilinger, J., Weigert, H.: Compact Hermitian Young projection operators. J. Math. Phys. 58(5), 051702 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alcock-Zeilinger, J., Weigert, H.: Simplification rules for birdtrack operators. J. Math. Phys. 58(5), 051701 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alcock-Zeilinger, J., Weigert, H.: Transition operators. J. Math. Phys. 58(5), 051703 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bourbaki, N.: Lie groups and Lie algebras. In: Elements of Mathematics, chap. VII–IX. Springer, New York (2000)Google Scholar
  6. 6.
    Cvitanović, P.: Group Theory: Birdtracks, Lie’s and Exceptional Groups. Princeton University Press, Princeton (2008)Google Scholar
  7. 7.
    Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  8. 8.
    Fulton, W., Harris, J.: Representation Theory—A First Course. Springer, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Goodman, R., Wallach, N.R.: Symmetry, Representations and Invariants. No. 255 in Graduate Texts in Mathematics. Springer, Berlin (2009)Google Scholar
  10. 10.
    Keppeler, S., Sjödahl, M.: Orthogonal multiplet bases in \(SU(N_c)\) color space. JHEP 09, 124 (2012)Google Scholar
  11. 11.
    Knuth, D.E.: The Art of Computer Programming, Volume 3—Sorting and Searching, 2nd edn. Addison-Wesley, Boston (1998)Google Scholar
  12. 12.
    Kosmann-Schwarzbach, Y.: Groups and Symmetries—From Finite Groups to Lie Groups. Springer, New York (2000)zbMATHGoogle Scholar
  13. 13.
    Littlewood, D.E., Richardson, A.R.: Group characters and algebra. Philos. Trans. Soc. London Ser. A 233, 99–142 (1934)CrossRefGoogle Scholar
  14. 14.
    Penrose, R.: Applications of negative dimension tensors. In: Welsh, D. (ed.) Combinatorial Mathematics and Its Applications, pp. 221–244. Academic Press, New York (1971)Google Scholar
  15. 15.
    Robinson, G.d.B.: On the representations of the symmetric group. Amer. J. Math. 60(3), 745–760 (1938)Google Scholar
  16. 16.
    Sagan, B.: The Symmetric Group—Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Springer, New York (2000)Google Scholar
  17. 17.
    Schensted, C.: Longest increasing and decreasing subsequences. Canad. J. Math. 13, 179–191 (1961)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schur, I.: Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. Inaugural-Dissertation (1901). [in German]Google Scholar
  19. 19.
    Schützenberger, M.: Quelques remarques sur une construction de Schensted. Math. Scand. 12, 117–128 (1963). [in French]MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tung, W.K.: Group Theory in Physics. World Scientific, Singapore (1985)CrossRefGoogle Scholar
  21. 21.
    Weyl, H.: The Classical Groups: Their Invariants and Representations, 2nd edn. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
  22. 22.
    Young, A.: On quantitative substitutional analysis—III. Proc. London Math. Soc. s2–28, 255–292 (1928)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations