Heisenberg algebra, wedges and crystals
Article
First Online:
- 62 Downloads
Abstract
We explain how the action of the Heisenberg algebra on the space of q-deformed wedges yields the Heisenberg crystal structure on charged multipartitions, by using the Boson–Fermion correspondence and looking at the action of the Schur functions at \(q=0\). In addition, we give the explicit formula for computing this crystal in full generality.
Keywords
Fock space Categorification Quantum groups Heisenberg algebra Crystals Symmetric functions CombinatoricsNotes
Acknowledgements
Many thanks to Emily Norton for pointing out an inconsistency in the first version of this paper and for helpful conversations.
References
- 1.Ariki, S.: On the decomposition numbers of the Hecke algebra of \(G(m,1, n)\). J. Math. Kyoto Univ. 36(4), 789–808 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222, 1883–1942 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Dudas, O., Varagnolo, M., Vasserot, É.: Categorical actions on unipotent representations I. Finite unitary groups (2015). arXiv:1509.03269
- 4.Dudas, O., Varagnolo, M., Vasserot, É.: Categorical actions on unipotent representations of finite classical groups. In: Categorification and Higher Representation Theory. Contemporary Mathematics, vol. 683, pp. 41–104. American Mathematical Society, Providence, RI (2017)Google Scholar
- 5.Etingof, P.: Supports of irreducible spherical representations of rational Cherednik algebras of finite Coxeter groups. Adv. Math. 229, 2042–2054 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Foda, O., Leclerc, B., Okado, M., Thibon, J.-Y., Welsh, T.: Branching functions of \(A_{n-1}^{(1)}\) and Jantzen–Seitz problem for Ariki–Koike algebras. Adv. Math. 141, 322–365 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Geck, M., Jacon, N.: Representations of Hecke Algebras at Roots of Unity. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
- 8.Gerber, T.: Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A. Algebra Rep. Theory 18, 1009–1046 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Gerber, T.: Triple crystal action in Fock spaces. Adv. Math. (2016, to appear). https://doi.org/10.1016/j.aim.2018.02.030
- 10.Gerber, T., Hiss, G., Jacon, N.: Harish–Chandra series in finite unitary groups and crystal graphs. Int. Math. Res. Not. 22, 12206–12250 (2015)MathSciNetzbMATHGoogle Scholar
- 11.Iijima, K.: On a higher level extension of Leclerc–Thibon product theorem in \(q\)-deformed Fock spaces. J. Algebra 371, 105–131 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Jacon, N., Lecouvey, C.: A combinatorial decomposition of higher level Fock spaces. Osaka J. Math. 50(4), 897–920 (2013)MathSciNetzbMATHGoogle Scholar
- 13.James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
- 14.Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of representations of \(U_q(\widehat{sl(n)})\) at \(q=0\). Commun. Math. Phys. 136(3), 543–566 (1991)CrossRefzbMATHGoogle Scholar
- 15.Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69, 455–485 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Kashiwara, M., Miwa, T., Stern, E.: Decomposition of \(q\)-deformed Fock spaces. Sel. Math. 1, 787–805 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon Tableaux, Hall–Littlewood Functions, quantum affine algebras and unipotent varieties. J. Math. Phys. 38, 1041–1068 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Leclerc, B., Thibon, J.-Y.: Littlewood–Richardson coefficients and Kazhdan–Lusztig polynomials. In: Combinatorial Methods in Representation Theory, volume 28 of Advanced Studies in Pure Mathematics. American Mathematical Society (2001)Google Scholar
- 19.Losev, I.: Supports of simple modules in cyclotomic Cherednik categories O (2015). arXiv:1509.00526
- 20.Lusztig, G.: Modular representations and quantum groups. Contemp. Math. 82, 58–77 (1989)MathSciNetzbMATHGoogle Scholar
- 21.Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs, Oxford (1998)zbMATHGoogle Scholar
- 22.Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 23.Shan, P.: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. Ann. Sci. Éc. Norm. Supér. 44, 147–182 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Shan, P., Vasserot, É.: Heisenberg algebras and rational double affine Hecke algebras. J. Am. Math. Soc. 25, 959–1031 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
- 26.Tingley, P.: Three combinatorial models for \(\widehat{{\mathfrak{s}}_{n}}\) crystals, with applications to cylindric plane partitions. Int. Math. Res. Not. 143, 1–40 (2008)Google Scholar
- 27.Uglov, D.: Canonical bases of higher-level \(q\)-deformed Fock spaces and Kazhdan–Lusztig polynomials. Prog. Math. 191, 249–299 (1999)MathSciNetzbMATHGoogle Scholar
- 28.Yvonne, X.: Bases canoniques d’espaces de Fock de niveau supérieur. Ph.D. thesis, Université de Caen (2005)Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018