Advertisement

Journal of Algebraic Combinatorics

, Volume 48, Issue 2, pp 247–287 | Cite as

p-Saturations of Welter’s game and the irreducible representations of symmetric groups

  • Yuki IrieEmail author
Article

Abstract

We establish a relation between the Sprague–Grundy function Open image in new window of p-saturations of Welter’s game and the degrees of the ordinary irreducible representations of symmetric groups. In these games, a position can be regarded as a partition \(\lambda \). Let \(\rho ^\lambda \) be the irreducible representation of the symmetric group \(\mathrm{Sym}(\left| \lambda \right| )\) corresponding to \(\lambda \). For every prime p, we show the following results: (1) \(\mathrm{sg}(\lambda ) \le \left| \lambda \right| \) with equality if and only if the degree of \(\rho ^\lambda \) is prime to p; (2) the restriction of \(\rho ^\lambda \) to \(\mathrm{Sym}(\mathrm{sg}(\lambda ))\) has an irreducible component with degree prime to p. Further, for every integer p greater than 1, we obtain an explicit formula for \(\mathrm{sg}(\lambda )\).

Keywords

Combinatorial game Sprague–Grundy function Symmetric group Irreducible representation p-Core 

Mathematics Subject Classification

91A46 20C30 

Notes

Acknowledgements

I would like to thank the reviewers for their helpful comments.

References

  1. 1.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, 2nd edn. A.K. Peters, Natick (2001)zbMATHGoogle Scholar
  2. 2.
    Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math. 3(1/4), 35–39 (1901)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Conway, J.H.: On Numbers and Games, 2nd edn. A.K. Peters, Natick (2001)zbMATHGoogle Scholar
  4. 4.
    Frame, J.S., Robinson, G.D.B., Thrall, R.M.: The hook graphs of the symmetric group. Canad. J. Math. 6, 316–324 (1954)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)Google Scholar
  6. 6.
    James, G.D.: Some combinatorial results involving Young diagrams. Math. Proc. Camb. Philos. Soc. 83(1), 1–10 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kawanaka, N.: Games and algorithms with Hook structure. Sugaku Expos. 28, 73–93 (2015)Google Scholar
  8. 8.
    Macdonald, I.G.: On the degrees of the irreducible representations of symmetric groups. Bull. Lond. Math. Soc. 3(2), 189–192 (1971)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Moore, E.H.: A generalization of the game called nim. Ann. Math. 11(3), 93–94 (1910)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Olsson, J.B.: McKay numbers and heights of characters. Math. Scand. 38, 25–42 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Olsson, J.B.: Combinatorics and representations of finite groups. Vorlesungen aus dem FB Mathematik der Univ. Essen, Heft 20 (1993)Google Scholar
  12. 12.
    Proctor, R.A.: Dynkin diagram classification of \(\lambda \)-minuscule Bruhat lattices and of d-complete posets. J. Algebr. Combin. 9(1), 61–94 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Proctor, R.A.: Minuscule elements of Weyl groups, the numbers game, and d-complete posets. J. Algebra 213(1), 272–303 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sagan, B.E.: The Symmetric Group, Graduate Texts in Mathematics, vol. 203. Springer, New York (2001)Google Scholar
  15. 15.
    Sato, M.: On a game (notes by K. Ueno) (in Japanese). In: Proceedings of the 12th Symposium of the Algebra Section of the Mathematical Society of Japan, pp. 123–136 (1968)Google Scholar
  16. 16.
    Sato, M.: Mathematical theory of Maya game (notes by H. Enomoto) (in Japanese). RIMS Kôkyûroku 98, 105–135 (1970)Google Scholar
  17. 17.
    Sato, M.: On Maya game (notes by H. Enomoto) (in Japanese). Sugaku no Ayumi 15(1), 73–84 (1970)Google Scholar
  18. 18.
    Sato, M.: Lecture Notes in Kyoto University (1984–1985) (Notes by T. Umeda) (in Japanese). No. 5 in Surikaiseki Lecture Note (1989)Google Scholar
  19. 19.
    Sprague, R.P.: Über mathematische Kampfspiele. Tohoku Math. J. First Ser. 41, 438–444 (1935)zbMATHGoogle Scholar
  20. 20.
    Welter, C.P.: The theory of a class of games on a sequence of squares, in terms of the advancing operation in a special group. Indag. Math. (Proc.) 57, 194–200 (1954)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Graduate School of ScienceChiba UniversityChiba-shiJapan

Personalised recommendations