Journal of Algebraic Combinatorics

, Volume 47, Issue 3, pp 357–401 | Cite as

Orbits of strongly solvable spherical subgroups on the flag variety



Let G be a connected reductive complex algebraic group and B a Borel subgroup of G. We consider a subgroup \(H \subset B\) which acts with finitely many orbits on the flag variety G / B, and we classify the H-orbits in G / B in terms of suitable root systems. As well, we study the Weyl group action defined by Knop on the set of H-orbits in G / B, and we give a combinatorial model for this action in terms of weight polytopes.


Strongly solvable spherical subgroups Orbits of a Borel subgroup Weight polytopes 

Mathematics Subject Classification

14M10 14M27 



We thank P. Bravi, M. Brion, F. Knop and A. Maffei for useful conversations on the subject, and especially R.S. Avdeev for numerous remarks and suggestions on previous versions of the paper which led to significant improvements. This work originated during a stay of the first named author in Friedrich-Alexander-Universität Erlangen-Nürnberg during the fall of 2012 partially supported by a DAAD fellowship, and he is grateful to F. Knop and to the Emmy Noether Zentrum for hospitality. Both the authors were partially supported by the DFG Schwerpunktprogramm 1388—Darstellungstheorie.


  1. 1.
    Arzhantsev, I.V., Zaidenberg, M.G., Kuyumzhiyan, K.: Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity. Mat. Sb. 203(7):3–30 (2012); translation in: Sb. Math. 203 no. 7–8, (2012), 923–949Google Scholar
  2. 2.
    Avdeev, R.S.: On solvable spherical subgroups of semisimple algebraic groups. Trans. Moscow Math. Soc. 72, 1–44 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Avdeev, R.: Strongly solvable spherical subgroups and their combinatorial invariants. Selecta Math. 21(3), 931–993 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Chapitres IV, V, VI, Actualités Scientifiques et Industrielles 1337, Hermann, Paris (1968)Google Scholar
  5. 5.
    Bravi, P., Luna, D.: An introduction to wonderful varieties with many examples of type \(\sf F_4\). J. Algebra 329(1), 4–51 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bravi, P., Pezzini, G.: Primitive wonderful varieties. Math. Z. 282(3–4), 1067–1096 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brion, M.: Quelques propriétés des espaces homogènes sphériques. Manuscripta Math. 55(2), 191–198 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brion, M.: Classification des espaces homogènes sphériques. Compositio Math. 63(2), 189–208 (1987)MathSciNetMATHGoogle Scholar
  9. 9.
    Brion, M.: Rational smoothness and fixed points of torus actions. Transform. Groups 4(2–3), 127–156 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brion, M.: On orbit closures of spherical subgroups in flag varieties. Comment. Math. Helv. 76(2), 263–299 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Carrell, J.B.: Torus actions and cohomology, In: Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, 83–158, Encyclopaedia Math. Sci. 131, Springer, Berlin (2002)Google Scholar
  12. 12.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Graduate Studies in Mathematics 124. American Mathematical Society, Providence, RI (2011)Google Scholar
  13. 13.
    Cupit-Foutou, S.: Wonderful Varieties: A Geometrical Realization. arXiv:0907.2852
  14. 14.
    Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 3, 507–588 (1970)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebr. Geom. 4(1), 181–193 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    Gandini, J.: Spherical orbit closures in simple projective spaces and their normalizations. Transform. Groups 16(1), 109–136 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hashimoto, T.: \(B_{n-1}\)-orbits on the flag variety \({{\rm GL}}_n/B_n\). Geom. Dedicata 105, 13–27 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Humphreys, J.E.: Linear Algebraic Groups, Graduate Texts in Mathematics 21. Springer, Berlin (1975)CrossRefGoogle Scholar
  19. 19.
    Knop, F.: The Luna-Vust Theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pp. 225–249, Manoj Prakashan, Madras (1991)Google Scholar
  20. 20.
    Knop, F.: On the set of orbits for a Borel subgroup. Comment. Math. Helv. 70(2), 285–309 (1995)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Knop, F.: Automorphisms, root systems, and compactifications of homogeneous varieties. J. Amer. Math. Soc. 9, 153–174 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Krämer, M.: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math. 38(2), 129–153 (1979)MathSciNetMATHGoogle Scholar
  23. 23.
    Llendo, A.: Affine \(T\)-varieties of complexity one and locally nilpotent derivations. Transform. Groups 15(2), 389–425 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Losev, I.V.: Uniqueness property for spherical homogeneous spaces. Duke Math. J. 147(2), 315–343 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Luna, D.: Sous-groupes sphériques résolubles. Prépubl. Inst. Fourier 241, 20 (1993)Google Scholar
  26. 26.
    Luna, D.: Variétés sphériques de type \({ A}\). Publ. Math. Inst. Hautes Études Sci. 94, 161–226 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Mikityuk, I.V.: Integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Mat. Sb. (N.S.) 129(4), 514–534 (1986) English transl.: Math. USSR–Sb. 57 (1987), 527–546Google Scholar
  28. 28.
    Montagard, P.L.: Une nouvelle proprieté de stabilité du pléthysme. Comment. Math. Helv. 71, 475–505 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Oda, T.: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 15, Springer, Berlin (1988)Google Scholar
  30. 30.
    Ressayre, N.: About Knop’s action of the Weyl group on the set of orbits of a spherical subgroup in the flag manifold. Transform. Groups 10(2), 255–265 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Richardson, R.W., Springer, T.A.: The Bruhat order on symmetric varieties. Geom. Dedicata 35, 389–436 (1990)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Richardson, R.W., Springer, T.A.: Combinatorics and geometry of K-orbits on the flag manifold. In: Elman, R., Schacher, M., Varadarajan, V. (eds.) Linear Algebraic Groups and their Representations, Contemp. Math. vol. 153, Providence, Amer. Math. Soc. pp. 109–142 (1993)Google Scholar
  33. 33.
    Springer, T.A.: Schubert varieties and generalizations. In: Representation theories and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol 514, Kluwer Acad. Publ., Dordrecht, pp. 413–440 (1998)Google Scholar
  34. 34.
    Timashev, D.A.: A generalization of the Bruhat decomposition. Izv. Ross. Akad. Nauk Ser. Mat. 58(5), 110–123 (1995) Translation in: Russian Acad. Sci. Izv. Math. 45(2), 339–352 (1994)Google Scholar
  35. 35.
    Vinberg, E.B.: Complexity of actions of reductive groups. Funct. Anal. Appl. 20(1), 1–11 (1986)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Vinberg, E.B.: On certain commutative subalgebras of a universal enveloping algebra. Math. USSR Izv. 36, 1–22 (1991)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wolf, J.: Admissible representations and geometry of flag manifolds, In: Eastwood, M., Wolf J., Zierau R. (eds.), The Penrose transform and analytic cohomology in representation theory, Contemp. Math. 154, Providence, Amer. Math. Soc., pp. 21–45 (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Dipartimento di Matematica SapienzaUniversità di RomaRomaItaly

Personalised recommendations