Journal of Algebraic Combinatorics

, Volume 47, Issue 1, pp 17–38 | Cite as

Regularity of powers of bipartite graphs

  • A. V. Jayanthan
  • N. Narayanan
  • S. Selvaraja


Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.


Bipartite graphs Castelnuovo–Mumford regularity Induced matching number Co-chordal cover number Edge ideal 



We would like to thank Adam Van Tuyl who pointed us to the article [5]. We would also like to thank Arindam Banerjee and Selvi Beyarslan for some useful discussions regarding the materials discussed in this paper. We heavily used the commutative algebra package, Macaulay 2, [13], for verifying whichever conjectures came to our mind. The third author is funded by National Board for Higher Mathematics, India.


  1. 1.
    Alilooee, A., Banerjee, A.: Powers of edge ideals of regularity three bipartite graphs. J. Commut. Algebra (to appear)Google Scholar
  2. 2.
    Banerjee, A.: Castelnuovo–Mumford Regularity and Edge Ideals. PhD thesis, University of Virginia (2015)Google Scholar
  3. 3.
    Banerjee, A.: The regularity of powers of edge ideals. J. Algebraic Comb. 41(2), 303–321 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benzaken, C., Crama, Y., Duchet, P., Hammer, P.L., Maffray, F.: More characterizations of triangulated graphs. J. Graph Theory 14(4), 413–422 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beyarslan, S., Hà, H.T., Trung, T.N.: Regularity of powers of forests and cycles. J. Algebraic Combin. 42(4), 1077–1095 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bıyıkoğlu, T., Civan, Y.: Castelnuovo–Mumford regularity of graphs. ArXiv e-prints (2015)Google Scholar
  7. 7.
    Bıyıkoğlu, T., Civan, Y.: Projective dimension of (hyper)graphs and the Castelnuovo–Mumford regularity of bipartite graphs. ArXiv e-prints (2016)Google Scholar
  8. 8.
    Busch, A.H., Dragan, F.F., Sritharan, R.: New min–max theorems for weakly chordal and dually chordal graphs. In: Combinatorial Optimization and Applications. Part II, volume 6509 of Lecture Notes in Computer Science, pp. 207–218. Springer, Berlin (2010)Google Scholar
  9. 9.
    Cutkosky, S.D., Herzog, J., Trung, N.V.: Asymptotic behaviour of the Castelnuovo–Mumford regularity. Compos. Math. 118(3), 243–261 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dao, H., Huneke, C., Schweig, J.: Bounds on the regularity and projective dimension of ideals associated to graphs. J. Algebraic Combin. 38(1), 37–55 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fernández-Ramos, O., Gimenez, P.: Regularity 3 in edge ideals associated to bipartite graphs. J. Algebraic Combin. 39(4), 919–937 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fröberg, R.: On Stanley–Reisner rings. In: Topics in algebra, Part 2 (Warsaw, 1988), volume 26 of Banach Center Publ., pp. 57–70. PWN, Warsaw, (1990)Google Scholar
  13. 13.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry.
  14. 14.
    Hà, H.T., Trung, N.V., Trung, T.N.: Depth and regularity of powers of sums of ideals. Math. Z. 282(3–4), 819–838 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hà, H.T., Van Tuyl, A.: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebraic Combin. 27(2), 215–245 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hibi, T., Higashitani, A., Kimura, K., Tsuchiya, A.: Dominating induced matchings of finite graphs and regularity of edge ideals. J. Algebraic Combin. 43(1), 173–198 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jacques, S.: Betti numbers of graph ideals. PhD thesis, University of Sheffield (2004)Google Scholar
  18. 18.
    Katzman, Mordechai: Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A 113(3), 435–454 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Khosh-Ahang, F., Moradi, S.: Regularity and projective dimension of the edge ideal of \(C_5\)-free vertex decomposable graphs. Proc. Am. Math. Soc. 142(5), 1567–1576 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kodiyalam, V.: Asymptotic behaviour of Castelnuovo–Mumford regularity. Proc. Am. Math. Soc. 128(2), 407–411 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kummini, M.: Homological invariants of monomial and binomial ideals. PhD thesis, University of Kansas (2008)Google Scholar
  22. 22.
    Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebraic Combin. 30(4), 429–445 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S.: Vertex decomposability and regularity of very well-covered graphs. J. Pure Appl. Algebra 215(10), 2473–2480 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, pp. xiv+417. Springer-Verlag, New York (2005)Google Scholar
  25. 25.
    Moghimian, M., Seyed Fakhari, S.A., Yassemi, S.: Regularity of powers of edge ideal of whiskered cycles. Comm. Algebra 45(3), 1246–1259 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nevo, E., Peeva, I.: \(C_4\)-free edge ideals. J. Algebraic Combin. 37(2), 243–248 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nguyen, H.D., Vu, T.: Powers of sums and their homological invariants. ArXiv e-prints (2016)Google Scholar
  28. 28.
    Van Tuyl, A.: Sequentially Cohen–Macaulay bipartite graphs: vertex decomposability and regularity. Arch. Math. (Basel) 93(5), 451–459 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Villarreal, R.H.: Cohen–Macaulay graphs. Manuscr. Math. 66(3), 277–293 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Villarreal, R.H.: Unmixed bipartite graphs. Rev. Colomb. Mat. 41(2), 393–395 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    West, D.B.: Introduction to Graph Theory. Prentice Hall Inc, Upper Saddle River, NJ (1996)zbMATHGoogle Scholar
  32. 32.
    Woodroofe, R.: Matchings, coverings, and Castelnuovo–Mumford regularity. J. Commut. Algebra 6(2), 287–304 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zheng, Xinxian: Resolutions of facet ideals. Comm. Algebra 32(6), 2301–2324 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations