Journal of Algebraic Combinatorics

, Volume 43, Issue 3, pp 665–691 | Cite as

Classification of tight regular polyhedra

Article

Abstract

A regular polyhedron of type \(\{p, q\}\) has at least 2pq flags, and it is called tight if it has exactly 2pq flags. The values of p and q for which there exist tight orientably regular polyhedra were previously known. We determine for which values of p and q there is a tight non-orientably regular polyhedron of type \(\{p, q\}\). Furthermore, we completely classify tight regular polyhedra in terms of their automorphism groups.

Keywords

Abstract regular polytope Tight polyhedron Tight polytope Flat polyhedron Flat polytope 

Mathematics Subject Classification

Primary 52B15 Secondary 51M20 05E18 52B70 

References

  1. 1.
    Conder, M.: The smallest regular polytopes of any given rank. Adv. Math. 236, 92–110 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Conder, M., Cunningham, G.: Tight orientably-regular polytopes. Ars Math. Contemp. 8, 68–81 (2015)MathSciNetMATHGoogle Scholar
  3. 3.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and relations for discrete groups. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas) (4th ed.), vol. 14, Springer, Berlin (1980)Google Scholar
  4. 4.
    Cunningham, G.: Minimal equivelar polytopes. Ars Math. Contemp. 7(2), 299–315 (2014)MathSciNetMATHGoogle Scholar
  5. 5.
    Finch, S., Sebah, P.: Squares and cubes modulo \(n\). http://arxiv.org/abs/math/0604465
  6. 6.
    Grek, A.S.: Regular polyhedra of simplest hyperbolic types (Russian). Ivanov. Gos. Ped. Inst. Ucen. Zap. 34, 27–30 (1963)MathSciNetGoogle Scholar
  7. 7.
    Hartley, M.I.: An atlas of small regular abstract polytopes. Period. Math. Hung. 53, 149–156 (2006). doi: 10.1007/s10998-006-0028-x MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    McMullen, P., Schulte, E.: Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, vol. 92. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Schulte, E., Weiss, A.I.: Chiral polytopes. applied geometry and discrete mathematics. In: DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 493–516. Amer. Math. Soc., Providence (1991)Google Scholar
  10. 10.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.12 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of Massachusetts BostonBostonUSA
  2. 2.National University of MexicoMoreliaMexico
  3. 3.Centro de Ciencias MatemáticasUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations