Journal of Algebraic Combinatorics

, Volume 43, Issue 3, pp 589–633

Laurent phenomenon sequences

Article

Abstract

In this paper, we undertake a systematic study of sequences generated by recurrences \(x_{m+n}x_m = P(x_{m+1}, \ldots , x_{m+n-1})\) which exhibit the Laurent phenomenon. Some of the most famous among these are the Somos and the Gale-Robinson sequences. Our approach is based on finding period 1 seeds of Laurent phenomenon algebras of Lam–Pylyavskyy. We completely classify polynomials P that generate period 1 seeds in the cases of \(n=2,3\) and of mutual binomial seeds. We also find several other interesting families of polynomials P whose generated sequences exhibit the Laurent phenomenon. Our classification for binomial seeds is a direct generalization of a result by Fordy and Marsh, that employs a new combinatorial gadget we call a double quiver.

Keywords

Laurent phenomenon Cluster algebra LP algebra 

References

  1. 1.
    Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28(2), 119–144 (2002). ISSN: 0196-8858Google Scholar
  2. 2.
    Fordy, A.P., Marsh, R.J.: Cluster mutation-periodic quivers and associated Laurent sequences. J. Algebr. Comb. 34(1), 19–66 (2011). INNS: 0925-9899Google Scholar
  3. 3.
    Bousquet-Mélou, M., Propp, J., West, J.: Perfect matchings for the three-term Gale-Robinson sequences. Electron. J. Comb. 16(1), Research Paper 125, 37. ISSN: 1077-8926 http://www.combinatorics.org/Volume_16/Abstracts/v16i1r125.html (2009)
  4. 4.
    Lam, T., Pylyavskyy, P.: Laurent phenomenon algebras. arxiv.org/pdf/1206.2611v2.pdf (2012)
  5. 5.
    Musiker, G.: Undergraduate Thesis: cluster algebras, Somos sequences and exchange graphs. www.math.umn.edu/~musiker/Research.html (2002)
  6. 6.
    Stein, W.A., et al.: Sage Mathematics Software (Version 5.9). The Sage Development Team (2013)Google Scholar
  7. 7.
    Russell, M.C.: Noncommutative recursions and the Laurent phenomenon. Adv. Appl. Math. 64, 21–30 (2015). ISSN:0196-8858Google Scholar
  8. 8.
    Hone, A.N.W., Ward, C.: A family of linearizable recurrences with the Laurent property. Bull. Lond. Math. Soc. 46(3), 503–516 (2014). ISSN: 0024-6093Google Scholar
  9. 9.
    Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (electronic) (2002). ISSN: 0894-0347Google Scholar
  10. 10.
    Hietarinta, J., Viallet, C.: Singularity confinement and chaos in discrete systems. Phys. Rev. Lett. 81(2), 325–328 (1998)Google Scholar
  11. 11.
    Maeda, S.: Completely integrable symplectic mapping. Proc. Japan Acad. Ser. A Math. Sci. 63(6), 198–200 (1987). ISSN: 0386-2194Google Scholar
  12. 12.
    Fordy, A.P.: Mutation-periodic quivers, integrable maps and associated Poisson algebras. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369(1939) 1264–1279 (2011). ISSN: 1364-503XGoogle Scholar
  13. 13.
    Fordy, A.P., Hone, A.: Discrete integrable systems and Poisson algebras from cluster maps. Comm. Math. Phys. 325(2), 527–584 (2014). ISSN: 0010-3616Google Scholar
  14. 14.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. Mosc. Math. J. 3(3) 899–934, 1199 (2003). Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday. ISSN: 1609-3321Google Scholar
  15. 15.
    Hone, A.N.W.: Laurent polynomials and superintegrable maps. In: SIGMA Symmetry Integrability Geometry Methods and Applications, vol. 3, Paper 022, 18 (2007). ISSN: 1815-0659Google Scholar
  16. 16.
    Hone, A.N.W.: Diophantine non-integrability of a third-order recurrence with the Laurent property. J. Phys. A 39(12) L171–L177 (2006). ISSN: 0305-4470Google Scholar
  17. 17.
    Baragar, A.: The Markoff–Hurwitz equations over number fields. Rocky Mountain J. Math. 35(3), 695–712 (2005). ISSN: 0035-7596Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations