Journal of Algebraic Combinatorics

, Volume 43, Issue 2, pp 277–324 | Cite as

Splines, lattice points, and arithmetic matroids

  • Matthias Lenz


Let X be a \((d\times N)\)-matrix. We consider the variable polytope \(\varPi _X(u) = \{ w \ge 0 : X w = u \}\). It is known that the function \(T_X\) that assigns to a parameter \(u \in \mathbb {R}^d\) the volume of the polytope \(\varPi _X(u)\) is piecewise polynomial. The Brion–Vergne formula implies that the number of lattice points in \(\varPi _X(u)\) can be obtained by applying a certain differential operator to the function \(T_X\). In this article, we slightly improve the Brion–Vergne formula and we study two spaces of differential operators that arise in this context: the space of relevant differential operators (i.e. operators that do not annihilate \(T_X\)) and the space of nice differential operators (i.e. operators that leave \(T_X\) continuous). These two spaces are finite-dimensional homogeneous vector spaces, and their Hilbert series are evaluations of the Tutte polynomial of the arithmetic matroid defined by the matrix X. They are closely related to the \(\mathscr {P}\)-spaces studied by Ardila–Postnikov and Holtz–Ron in the context of zonotopal algebra and power ideals.


Lattice polytope Vector partition function Todd operator Brion–Vergne formula Arithmetic matroid Zonotopal algebra 

Mathematics Subject Classification

Primary: 05B35 19L10 52B20 Secondary: 13B25 14M25 16S32 41A15 47F05 52B40 52C35 



The author would like to thank Lars Kastner and Zhiqiang Xu for helpful conversations.


  1. 1.
    Akopyan, A.A., Saakyan, A.A.: A system of differential equations that is related to the polynomial class of translates of a box spline. Mat. Zametki 44(6), 705–724 (1988)MathSciNetGoogle Scholar
  2. 2.
    Ardila, F., Postnikov, A.: Combinatorics and geometry of power ideals. Trans. Am. Math. Soc. 362(8), 4357–4384 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Ardila, F., Postnikov, A.: Correction to “Combinatorics and geometry of power ideals”: Two counterexamples for power ideals of hyperplane arrangements. Trans. Am. Math. Soc. 367, 3759–3762 (2015) (correction to [2]) Google Scholar
  4. 4.
    Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York (2007)Google Scholar
  5. 5.
    Ben-Artzi, A., Ron, A.: Translates of exponential box splines and their related spaces. Trans. Am. Math. Soc. 309(2), 683–710 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Berget, A.: Products of linear forms and Tutte polynomials. Eur. J. Comb. 31(7), 1924–1935 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Boysal, A., Vergne, M.: Paradan’s wall crossing formula for partition functions and Khovanskii–Pukhlikov differential operator. Ann. Inst. Fourier (Grenoble) 59(5), 1715–1752 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Brändén, P., Moci, L.: The multivariate arithmetic Tutte polynomial. Trans. Am. Math. Soc. 366(10), 5523–5540 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Brion, M., Vergne, M.: Residue formulae, vector partition functions and lattice points in rational polytopes. J. Am. Math. Soc. 10(4), 797–833 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Brion, M., Vergne, M.: Arrangement of hyperplanes. I. Rational. functions and Jeffrey–Kirwan residue. Ann. Sci. École Norm. Sup. (4) 32(5), 715–741 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cavazzani, F., Moci, L.: Geometric Realizations and Duality for Dahmen–Micchelli Modules and De Concini–Procesi–Vergne Modules (2013). arXiv:1303.0902
  12. 12.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 185. Springer, New York (2005)Google Scholar
  13. 13.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)Google Scholar
  14. 14.
    D’Adderio, M., Moci, L.: Ehrhart polynomial and arithmetic Tutte polynomial. Eur. J. Comb. 33(7), 1479–1483 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    D’Adderio, M., Moci, L.: Arithmetic matroids, the Tutte polynomial and toric arrangements. Adv. Math. 232(1), 335–367 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Dahmen, W., Micchelli, C.A.: On the local linear independence of translates of a box spline. Stud. Math. 82(3), 243–263 (1985)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dahmen, W., Micchelli, C.A.: On the solution of certain systems of partial difference equations and linear dependence of translates of box splines. Trans. Am. Math. Soc. 292(1), 305–320 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    de Boor, C., Dyn, N., Ron, A.: On two polynomial spaces associated with a box spline. Pac. J. Math. 147(2), 249–267 (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    de Boor C., Höllig, K.: \(B\)-splines from parallelepipeds. J. Anal. Math. 42, 99–115 (1982)Google Scholar
  20. 20.
    de Boor, C., Höllig, K., Riemenschneider, S.D.: Box Splines, vol. 98. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    De Concini, C., Procesi, C.: Topics in Hyperplane Arrangements, Polytopes and Box-Splines. Springer, New York (2011)zbMATHGoogle Scholar
  22. 22.
    De Concini, C., Procesi, C., Vergne, M.: Vector partition functions and index of transversally elliptic operators. Transform. Groups 15(4), 775–811 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    De Concini, C., Procesi, C., Vergne, M.: Infinitesimal index: cohomology computations. Transform. Groups 16(3), 717–735 (2011)Google Scholar
  24. 24.
    De Concini, C., Procesi, C., Vergne, M.: Box splines and the equivariant index theorem. J. Inst. Math. Jussieu 12, 503–544 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    De Concini, C., Procesi, C., Vergne, M.: The infinitesimal index. J. Inst. Math. Jussieu 12(2), 297–334 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    De Loera, J.A.: The many aspects of counting lattice points in polytopes. Math. Semesterber. 52(2), 175–195 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Lenz, M.: Interpolation, box splines, and lattice points in zonotopes. Int. Math. Res. Not. 2014(20), 5697–5712 (2014)Google Scholar
  28. 28.
    Lenz, M.: Splines, lattice points, and (arithmetic) matroids. In: Proceedings of the 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, France, pp. 49–60 (2014)Google Scholar
  29. 29.
    Lenz, M.: Lattice points in polytopes, box splines, and Todd operators. Int. Math. Res. Not. 2015(14), 5289–5310 (2015)Google Scholar
  30. 30.
    Dyn, N., Ron, A.: Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems. Trans. Am. Math. Soc. 319(1), 381–403 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  32. 32.
    Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9. Springer, Berlin (1956)Google Scholar
  33. 33.
    Holtz, O., Ron, A.: Zonotopal algebra. Adv. Math. 227(2), 847–894 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Holtz, O., Ron, A., Zhiqiang, X.: Hierarchical zonotopal spaces. Trans. Am. Math. Soc. 364(2), 745–766 (2012)CrossRefzbMATHGoogle Scholar
  35. 35.
    Jia, R.-Q.: Subspaces invariant under translations and dual bases for box splines. Ser. A. Chin. Ann. Math. 11(6), 733–743 (1990) (in Chinese) Google Scholar
  36. 36.
    Khovanskiĭ, A., Pukhlikov, A.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes. Algebr. Anal. 4(4), 188–216 (1992)Google Scholar
  37. 37.
    Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211, Springer, New York (2002)Google Scholar
  38. 38.
    Lenz, M.: Hierarchical zonotopal power ideals. Eur. J. Comb. 33(6), 1120–1141 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Moci, L.: A Tutte polynomial for toric arrangements. Trans. Am. Math. Soc. 364(2), 1067–1088 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Orlik, P., Terao, H.: Commutative algebras for arrangements. Nagoya Math. J. 134, 65–73 (1994)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Oxley, J.G.: Matroid Theory. Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
  42. 42.
    Stanley, R.P.: An introduction to hyperplane arrangements. In: Miller, E., Reiner, V., Sturmfels, B. (eds.) Geometric Combinatorics, IAS/Park City Mathematics Series, vol. 13, pp. 389–496. American Mathematical Society, Providence (2007)Google Scholar
  43. 43.
    Szenes, A., Vergne, M.: Residue formulae for vector partitions and Euler–MacLaurin sums. Adv. Appl. Math. 30(1–2), 295–342 (2003) (Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001)) Google Scholar
  44. 44.
    Vergne, M.: Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes. In: Mezzetti, E., Paycha, S. (eds.) European Women in Mathematics (Malta, 2001), pp. 225–285. World Science Publications, River Edge (2003)Google Scholar
  45. 45.
    Wang, R.-H.: Multivariate spline and algebraic geometry. J. Comput. Appl. Math. 1211–2, 153–163 (2000) (Numerical analysis in the 20th century, Vol. I, Approximation theory) Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations