Journal of Algebraic Combinatorics

, Volume 42, Issue 3, pp 763–791 | Cite as

Skew row-strict quasisymmetric Schur functions

  • Sarah K. Mason
  • Elizabeth Niese


Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function.


Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule 



Both authors were partially supported by a Wake Forest University Collaboration Pilot Grant.


  1. 1.
    Abe, E.: Hopf Algebras, Cambridge Tracts in Mathematics, vol. 74. Cambridge University Press, Cambridge-New York (1980). Translated from the Japanese by Hisae Kinoshita and Hiroko TanakaGoogle Scholar
  2. 2.
    Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn–Sommerville relations. Compos. Math. 142(1), 1–30 (2006). doi: 10.1112/S0010437X0500165X zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bessenrodt, C., Luoto, K., van Willigenburg, S.: Skew quasisymmetric Schur functions and noncommutative Schur functions. Adv. Math. 226(5), 4492–4532 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ehrenborg, R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ferreira, J.: A Littlewood–Richardson type rule for row-strict quasisymmetric Schur functions. Disc. Math. Theor. Comput. Sci. Proc. AO, 329–338 (2011)Google Scholar
  6. 6.
    Fulton, W.: Young Tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997). With applications to representation theory and geometryGoogle Scholar
  7. 7.
    Gessel, I.: Multipartite p-partitions and inner products of skew Schur functions. Contemp. Math 34, 289–301 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gessel, I.M., Reutenauer, C.: Counting permutations with given cycle structure and descent set. J. Comb. Theory Ser. A 64(2), 189–215 (1993). doi: 10.1016/0097-3165(93)90095-P zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for non-symmetric Macdonald polynomials. Amer. J. Math. 130(2), 359–383 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Quasisymmetric Schur functions. J. Comb. Theory Ser. A 118(2), 463–490 (2011). doi: 10.1016/j.jcta.2009.11.002 zbMATHCrossRefGoogle Scholar
  11. 11.
    Hazewinkel, M., Gubareni, N., Kirichenko, V.V.: Algebras, Rings and Modules, Mathematical Surveys and Monographs, vol. 168. American Mathematical Society, Providence (2010). doi: 10.1090/surv/168. Lie algebras and Hopf algebras
  12. 12.
    Hivert, F.: Hecke algebras, difference operators, and quasi-symmetric functions. Adv. Math. 155(2), 181–238 (2000). doi: 10.1006/aima.1999.1901 zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lam, T., Lauve, A., Sottile, F.: Skew Littlewood–Richardson Rules from Hopf Algebras. Arxiv preprint arXiv:0908.3714 (2009)
  14. 14.
    Luoto, K., Mykytiuk, S., van Willigenburg, S.: An Introduction to Quasisymmetric Schur Functions. Springer Briefs in Mathematics. Springer, New York (2013). doi: 10.1007/978-1-4614-7300-8. Hopf algebras, quasisymmetric functions, and Young composition tableaux
  15. 15.
    Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995). doi: 10.1006/jabr.1995.1336 zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Mason, S.: A decomposition of Schur functions and an analogue of the Robinson–Schensted–Knuth algorithm. Séminaire Lotharingien de Combinatoire 57(B57e) (2008).
  17. 17.
    Mason, S., Remmel, J.: Row-strict quasisymmetric Schur functions. Ann. Comb. 18(1), 127–148 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Schur, I.: Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen. Ph.D. thesis, Berlin (1901)Google Scholar
  19. 19.
    Stanley, R.P.: On the number of reduced decompositions of elements of coxeter groups. Eur. J. Comb. 5(4), 359–372 (1984). doi: 10.1016/S0195-6698(84)80039-6 zbMATHCrossRefGoogle Scholar
  20. 20.
    Stanley, R.P.: Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and appendix 1 by Sergey FominGoogle Scholar
  21. 21.
    Sweedler, M.E.: Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin Inc, New York (1969)Google Scholar
  22. 22.
    Tewari, V., Willigenburg, S.: Quasisymmetric Schur functions and modules of the 0-hecke algebra. In: DMTCS Proceedings 0(01) (2014).
  23. 23.
    Uglov, D.: Skew Schur functions and Yangian actions on irreducible integrable modules of \(\widehat{\mathfrak{g l}}_N\). Ann. Comb. 4(3–4), 383–400 (2000). doi: 10.1007/PL00001287. Conference on Combinatorics and Physics (Los Alamos, NM)

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsWake Forest UniversityWinston-SalemUSA
  2. 2.Department of MathematicsMarshall UniversityHuntingtonUSA

Personalised recommendations