Journal of Algebraic Combinatorics

, Volume 36, Issue 3, pp 475–500 | Cite as

Cluster-additive functions on stable translation quivers



Additive functions on translation quivers have played an important role in the representation theory of finite-dimensional algebras, the most prominent ones are the hammock functions introduced by S. Brenner. When dealing with cluster categories (and cluster-tilted algebras), one should look at a corresponding class of functions defined on stable translation quivers, namely the cluster-additive ones. We conjecture that the cluster-additive functions on a stable translation quiver of Dynkin type \(\mathbb{A}_{n}, \mathbb{D}_{n}, \mathbb{E}_{6}, \mathbb {E}_{7}, \mathbb{E}_{8}\) are non-negative linear combinations of cluster-hammock functions (with index set a tilting set). The present paper provides a first study of cluster-additive functions and gives a proof of the conjecture in the case \(\mathbb{A}_{n}\).


Translation quiver Additive function Cluster-additive function Hammocks Cluster-hammocks Dynkin quiver Cluster category Cluster-tilted algebra 


  1. 1.
    Assem, I., Reutenauer, C., Smith, D.: Friezes. Adv. Math. 225, 3134–3165 (2010) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Usp. Mat. Nauk 28, 19–33 (1973). Russ. Math. Surv. 29, 17–32 (1973) MathSciNetMATHGoogle Scholar
  3. 3.
    Brenner, S.: A combinatorial characterisation of finite Auslander–Reiten quivers. In: Dlab, V., Gabriel, P., Michler, G. (eds.) Representation Theory I. Finite Dimensional Algebras. LNM, vol. 1177, pp. 13–49. Springer, Berlin (1986) CrossRefGoogle Scholar
  4. 4.
    Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–618 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Buan, A.B., Marsh, R.J., Reiten, I.: Cluster-tilted algebras. Trans. Am. Math. Soc. 359, 323–332 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Butler, M.C.R.: Grothendieck groups and almost split sequences. In: Roggenkamp, K.W. (ed.) Integral Representations and Applications. LNM, vol. 882, pp. 357–368. Springer, Berlin (1981) CrossRefGoogle Scholar
  7. 7.
    Calderon, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n-case). Trans. Am. Math. Soc. 358, 1347–1364 (2006) CrossRefGoogle Scholar
  8. 8.
    Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundation. J. Am. Math. Soc. 15, 497–529 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gabriel, P.: Auslander–Reiten sequences and representation-finite algebras. In: Representation Theory I. LNM, vol. 831, pp. 1–71. Springer, Berlin (1980) CrossRefGoogle Scholar
  10. 10.
    Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. LMS Lecture Note Series, vol. 119. Cambridge (1988) Google Scholar
  11. 11.
    Happel, D., Preiser, U., Ringel, C.M.: Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules. In: Representation Theory II. LNM, vol. 832, pp. 280–294 (1980) CrossRefGoogle Scholar
  12. 12.
    Ringel, C.M.: The minimal representation-infinite algebras which are special biserial. In: Skowroński, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics, pp. 501–560. European Math. Soc. Publ. House, Zürich (2011) CrossRefGoogle Scholar
  13. 13.
    Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv. 55, 199–224 (1980) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Ringel, C.M., Vossieck, D.: Hammocks. Proc. Lond. Math. Soc. 54(3), 216–246 (1987) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations