Journal of Algebraic Combinatorics

, Volume 36, Issue 2, pp 263–277 | Cite as

Mixing chiral polytopes



An abstract polytope of rank n is said to be chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. Examples of chiral polytopes have been difficult to find. A “mixing” construction lets us combine polytopes to build new regular and chiral polytopes. By using the chirality group of a polytope, we are able to give simple criteria for when the mix of two polytopes is chiral.


Abstract regular polytope Chiral polytope Chiral maps Chirality group 


  1. 1.
    Breda D’Azevedo, A., Jones, G.A.: Totally chiral maps and hypermaps of small genus. J. Algebra 322, 3971–3996 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Breda D’Azevedo, A., Nedela, R.: Join and intersection of hypermaps. Acta Univ. M. Belli Math. 9, 13–28 (2001) MathSciNetMATHGoogle Scholar
  3. 3.
    Breda D’Azevedo, A., Jones, G., Nedela, R., Škoviera, M.: Chirality groups of maps and hypermaps. J. Algebr. Comb. 29, 337–355 (2009) MATHCrossRefGoogle Scholar
  4. 4.
    Breda D’Azevedo, A., Jones, G., Schulte, E.: Constructions of chiral polytopes of small rank. Can. J. Math. 63(6), 1254–1283 (2011) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Breda, A., Breda D’Azevedo, A., Nedela, R.: Chirality group and chirality index of Coxeter chiral maps. Ars Comb. 81, 147–160 (2006) MathSciNetMATHGoogle Scholar
  6. 6.
    Conder, M., Hubard, I., Pisanski, T.: Constructions for chiral polytopes. J. Lond. Math. Soc. (2) 77, 115–129 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973) Google Scholar
  8. 8.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 4th edn. Springer, Berlin (1980) Google Scholar
  9. 9.
    Hartley, M.I., Hulpke, A.: Polytopes derived from sporadic simple groups. Contrib. Discret. Math. 5(2), 106–118 (2010) MathSciNetGoogle Scholar
  10. 10.
    Hubard, I., Weiss, A.I.: Self-duality of chiral polytopes. J. Comb. Theory, Ser. A 111, 128–136 (2005) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Leemans, D., Vauthier, L.: An atlas of abstract regular polytopes for small groups. Aequ. Math. 72(3), 313–320 (2006) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    McMullen, P., Schulte, E.: Abstract regular polytopes. In: Encyclopedia of Math. Appl., vol. 92. Cambridge University Press, Cambridge (2002) Google Scholar
  13. 13.
    Orbanic, A.: F-actions and parallel-product decomposition of reflexible maps. J. Algebr. Comb. 26, 507–527 (2007) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pellicer, D.: A construction of higher rank chiral polytopes. Discrete Math. 310, 1222–1237 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schulte, E., Weiss, A.I.: Chiral polytopes. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics (The Klee Festschrift). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 493–516. Am. Math. Soc./ACM, Providence/New York (1991) Google Scholar
  16. 16.
    Schulte, E., Weiss, A.I.: Free extensions of chiral polytopes. Can. J. Math. 47, 641–654 (1995) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    The GAP Group: GAP—Groups, Algorithms, and Programming, version 4.4.9 (2006).
  18. 18.
    Wilson, S.E.: Parallel products in groups and maps. J. Algebra 167, 539–546 (1994) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations