Journal of Algebraic Combinatorics

, Volume 35, Issue 2, pp 291–311 | Cite as

Schur elements for the Ariki–Koike algebra and applications

  • Maria Chlouveraki
  • Nicolas JaconEmail author


We study the Schur elements associated to the simple modules of the Ariki–Koike algebra. We first give a cancellation-free formula for them so that their factors can be easily read and programmed. We then study direct applications of this result. We also complete the determination of the canonical basic sets for cyclotomic Hecke algebras of type G(l,p,n) in characteristic 0.


Hecke algebras Complex reflection groups Schur elements Blocks Basic sets 


  1. 1.
    Ariki, S.: On the semi-simplicity of the Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr \mathfrak{S}_{n}\). J. Algebra 169, 216–225 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ariki, S.: Representations of Quantum Algebras and Combinatorics of Young Tableaux. University Lecture Series, vol. 26. American Mathematical Society, Providence (2002) zbMATHGoogle Scholar
  3. 3.
    Ariki, S., Koike, K.: A Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr \mathfrak{S}_{n}\) and construction of its irreducible representations. Adv. Math. 106, 216–243 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bremke, K., Malle, G.: Reduced words and a length function for G(e,1,n). Indag. Math. 8, 453–469 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chlouveraki, M.: Blocks and Families For Cyclotomic Hecke Algebras. LNM, vol. 1981. Springer, Berlin (2009) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chlouveraki, M., Jacon, N.: Schur elements and Basic sets for Cyclotomic Hecke algebras. J. Algebra Appl. (to appear) Google Scholar
  7. 7.
    Chlouveraki, M., Gordon, I., Griffeth, S.: Cell modules and canonical basic sets for Hecke algebras from Cherednik algebras. Contemp. Math. (to appear). arXiv:1104.4070
  8. 8.
    Dipper, R., Mathas, A.: Morita equivalences of Ariki–Koike algebras. Math. Z. 240(3), 579–610 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dunkl, C., Griffeth, S.: Generalized Jack polynomials and the representation theory of rational Cherednik algebras. arXiv:1002.4607
  10. 10.
    Fayers, M.: Weights of multipartitions and representations of Ariki–Koike algebras. II. Canonical bases. J. Algebra 319(7), 2963–2978 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Geck, M., Jacon, N.: Irreducible Representations of Hecke Algebras at Roots of Unity. Algebras and Applications, vol. 15. Springer, London (2011) CrossRefGoogle Scholar
  12. 12.
    Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Mathematical Society Monographs. New Series, vol. 21. Oxford University Press, New York (2000) zbMATHGoogle Scholar
  13. 13.
    Geck, M., Iancu, L., Malle, G.: Weights of Markov traces and generic degrees. Indag. Math. 11, 379–397 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Genet, G., Jacon, N.: Modular representations of cyclotomic Hecke algebras of type G(r,p,n). Int. Math. Res. Not. 2006, 1–18 (2006) MathSciNetGoogle Scholar
  15. 15.
    Jacon, N.: Crystal graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki–Koike algebras. Algebr. Represent. Theory 10, 565–591 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Malle, G., Mathas, A.: Symmetric cyclotomic Hecke algebras. J. Algebra 205, 275–293 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Malle, G., Rouquier, R.: Familles de caractères de groupes de réflexions complexes. Represent. Theory 7, 610–640 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Mathas, A.: Matrix units and generic degrees for the Ariki–Koike algebras. J. Algebra 281, 695–730 (2004) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of MathematicsEdinburghUK
  2. 2.UFR Sciences et TechniquesBesançonFrance

Personalised recommendations