Journal of Algebraic Combinatorics

, Volume 35, Issue 1, pp 19–59 | Cite as

Cohomology of GKM fiber bundles

Article

Abstract

The equivariant cohomology ring of a GKM manifold is isomorphic to the cohomology ring of its GKM graph. In this paper we explore the implications of this fact for equivariant fiber bundles for which the total space and the base space are both GKM and derive a graph theoretical version of the Leray–Hirsch theorem. Then we apply this result to the equivariant cohomology theory of flag varieties.

Keywords

Equivariant fiber bundle Equivariant cohomology GKM space Flag manifold 

References

  1. 1.
    Andersen, H.H., Jantzen, J.C., Soergel, W.: Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p. Astérisque 220 (1994) Google Scholar
  2. 2.
    Billey, S.: Kostant polynomials and the cohomology ring for G/B. Duke Math. J. 96(1), 205–224 (1999) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math., 243(1–3), 21–66 (2002) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chang, T., Skjelbred, T.: The topological Schur lemma and related results. Ann. Math. (2) 100, 307–321 (1974) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991) CrossRefMATHGoogle Scholar
  6. 6.
    Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Guillemin, V., Holm, T.: GKM theory for torus actions with nonisolated fixed points. Int. Math. Res. Not. 40, 2105–2124 (2004) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Guillemin, V., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Mathematics Past and Present. Springer, Berlin (1999) MATHGoogle Scholar
  9. 9.
    Guillemin, V., Zara, C.: Equivariant DeRham cohomology and graphs. Asian J. Math. 3(1), 49–76 (1999) MATHMathSciNetGoogle Scholar
  10. 10.
    Guillemin, V., Zara, C.: 1-skeleta, Betti numbers, and equivariant cohomology. Duke Math. J. 107(2), 283–349 (2001) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Guillemin, V., Lerman, E., Sternberg, S.: Symplectic Fibrations and Multiplicity Diagrams. Cambridge University Press, Cambridge (1996) CrossRefMATHGoogle Scholar
  12. 12.
    Guillemin, V., Holm, T., Zara, C.: A GKM description of the equivariant cohomology ring of a homogeneous space. J. Algebr. Comb. 23(1), 21–41 (2006) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Guillemin, V., Sabatini, S., Zara, C.: Balanced fiber bundles and GKM theory (in preparation) Google Scholar
  14. 14.
    Hiller, H.: Schubert calculus of a Coxeter group. Enseign. Math. 27, 57–84 (1981) MATHMathSciNetGoogle Scholar
  15. 15.
    Humphreys, J.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990) MATHGoogle Scholar
  16. 16.
    Knutson, A.: A Schubert calculus recurrence from the noncomplex W-action on G/B. arXiv:math/0306304v1 [math.CO]
  17. 17.
    Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser Boston, Boston (2002) CrossRefMATHGoogle Scholar
  18. 18.
    Sabatini, S., Tolman, S.: New techniques for obtaining Schubert-type formulas for Hamiltonian manifolds. arXiv:1004.4543v1 [math.SG]
  19. 19.
    Tymoczko, J.: Permutation representations on Schubert varieties. Am. J. Math. 130(5), 1171–1194 (2008) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Victor Guillemin
    • 1
  • Silvia Sabatini
    • 2
  • Catalin Zara
    • 3
  1. 1.Department of MathematicsMITCambridgeUSA
  2. 2.Department of MathematicsEPFLLausanneSwitzerland
  3. 3.Department of MathematicsUMass BostonBostonUSA

Personalised recommendations