Journal of Algebraic Combinatorics

, Volume 34, Issue 2, pp 267–300 | Cite as

Centerpole sets for colorings of abelian groups

  • Taras Banakh
  • Ostap Chervak


A subset CG of a group G is called k-centerpole if for each k-coloring of G there is an infinite monochromatic subset G, which is symmetric with respect to a point cC in the sense that S=cS −1 c. By c k (G) we denote the smallest cardinality c k (G) of a k-centerpole subset in G. We prove that c k (G)=c k (ℤ m ) if G is an abelian group of free rank mk. Also we prove that c 1(ℤn+1)=1, c 2(ℤn+2)=3, c 3(ℤn+3)=6, 8≤c 4(ℤn+4)≤c 4(ℤ4)=12 for all nω, and \({\frac{1}{2}(k^{2}+3k-4)\le c_{k}(\mathbb{Z}^{n})\le2^{k}-1-\max_{s\le k-2}\binom {k-1}{s-1}}\) for all nk≥4.


Abelian group Centerpole set Coloring Symmetric subset Monochromatic subset 


  1. 1.
    Banakh, T.: On a cardinal group invariant related to partition of abelian groups. Mat. Zametki 64(3), 341–350 (1998) MathSciNetGoogle Scholar
  2. 2.
    Banakh, T., Bokalo, B., Guran, I., Radul, T., Zarichnyi, M.: Problems from the Lviv topological seminar. In: Pearl, E. (ed.) Open Problems in Topology, vol. II, pp. 655–667. Elsevier, Amsterdam (2007) CrossRefGoogle Scholar
  3. 3.
    Banakh, T., Dudko, A., Repovs, D.: Symmetric monochromatic subsets in colorings of the Lobachevsky plane. Discrete Math. Theor. Comput. Sci. 12(1), 12–20 (2010) MathSciNetGoogle Scholar
  4. 4.
    Banakh, T., Protasov, I.V.: Asymmetric partitions of Abelian groups. Mat. Zametki 66(1), 17–30 (1999) MathSciNetGoogle Scholar
  5. 5.
    Banakh, T., Protasov, I.: Symmetry and colorings: some results and open problems. Izv. Gomel Univ. Vopr. Algebry 4(17), 5–16 (2001) Google Scholar
  6. 6.
    Banakh, T., Verbitski, O., Vorobets, Ya.: Ramsey treatment of symmetry. Electron. J. Comb. 7(1), R52 (2000), 25 pp. Google Scholar
  7. 7.
    Engelking, R.: General topology. Sigma Series in Pure Mathematics, vol. 6. Heldermann Verlag, Berlin (1989) zbMATHGoogle Scholar
  8. 8.
    Gryshko, Yu.: Monochrome symmetric subsets in 2-colorings of groups. Electron. J. Comb. 10, R28 (2003), 8 pp. MathSciNetGoogle Scholar
  9. 9.
    Just, W., Weese, M.: Discovering Modern Set Theory. II. Set-Theoretic Tools for Every Mathematician. GSM, vol. 18. Am. Math. Soc., Providence (1997) zbMATHGoogle Scholar
  10. 10.
    Morris, S.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups. London Mathematical Society Lecture Note Series, vol. 29. Cambridge University Press, Cambridge (1977) zbMATHCrossRefGoogle Scholar
  11. 11.
    Protasov, I.V.: Some problems in combinatorics of colorings. U Svìtì Mat. 1, 61 (1995) (in Ukrainian) Google Scholar
  12. 12.
    Protasov, I.V.: Asymmetrically decomposable abelian groups. Mat. Zametki 59(3), 468–471 (1996) MathSciNetGoogle Scholar
  13. 13.
    Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Ivan Franko National University of LvivLvivUkraine
  2. 2.Uniwersytet Humanistyczno-Przyrodniczy Jana KochanowskiegoKielcePoland

Personalised recommendations