Journal of Algebraic Combinatorics

, Volume 34, Issue 1, pp 141–162 | Cite as

Permutation resolutions for Specht modules

Open Access
Article

Abstract

For every composition λ of a positive integer r, we construct a finite chain complex whose terms are direct sums of permutation modules M μ for the symmetric group \(\mathfrak{S}_{r}\) with Young subgroup stabilizers \(\mathfrak{S}_{\mu}\). The construction is combinatorial and can be carried out over every commutative base ring k. We conjecture that for every partition λ the chain complex has homology concentrated in one degree (at the end of the complex) and that it is isomorphic to the dual of the Specht module S λ . We prove the exactness in special cases.

Keywords

Symmetric group Permutation module Specht module Resolution 

References

  1. 1.
    Akin, K.: On complexes relating the Jacobi–Trudi identity with the Bernstein–Gelfand–Gelfand resolution. J. Algebra 117, 494–503 (1988) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Akin, K., Buchsbaum, D.A.: Characteristic-free representation theory of the general linear group. Adv. Math. 58, 149–200 (1985) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Akin, K., Buchsbaum, D.A.: Characteristic-free representation theory of the general linear group, II: homological considerations. Adv. Math. 72, 171–210 (1988) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules. In: Gelfand, I.M. (ed.) Lie Groups and Their Representations, pp. 21–64. Wiley, New York (1975) Google Scholar
  5. 5.
    Curtis, C.W., Reiner, I.: Methods of Representation Theory, vol. 1. Wiley, New York (1981) MATHGoogle Scholar
  6. 6.
    Donkin, S.: Finite resolutions of modules for reductive algebraic groups. J. Algebra 101, 473–488 (1986) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Doty, S.R.: Resolutions of B modules. Indag. Math. 5(3), 267–283 (1994) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (1999) Google Scholar
  9. 9.
    Green, J.A.: Polynomial Representations of GL n. Springer Lecture Notes, vol. 830. Springer, Berlin (1980) MATHGoogle Scholar
  10. 10.
    James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics, vol. 682. Springer, Berlin (1978) MATHGoogle Scholar
  11. 11.
    Santana, A.P.: The Schur algebra S(B +) and projective resolutions of Weyl modules. J. Algebra 161, 480–504 (1993) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Woodcock, D.J.: Borel Schur algebras. Commun. Algebra 22(5), 1703–1721 (1994) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Woodcock, D.J.: A vanishing theorem for Schur modules. J. Algebra 165, 483–506 (1994) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Zelevinskii, A.V.: Resolvents, dual pairs, and character formulas. Funct. Anal. Appl. 21, 152–154 (1987) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  2. 2.Department of MathematicsUniversity of StuttgartStuttgartGermany

Personalised recommendations