Advertisement

Journal of Algebraic Combinatorics

, Volume 34, Issue 1, pp 19–66 | Cite as

Cluster mutation-periodic quivers and associated Laurent sequences

  • Allan P. Fordy
  • Robert J. MarshEmail author
Article

Abstract

We consider quivers/skew-symmetric matrices under the action of mutation (in the cluster algebra sense). We classify those which are isomorphic to their own mutation via a cycle permuting all the vertices, and give families of quivers which have higher periodicity.

The periodicity means that sequences given by recurrence relations arise in a natural way from the associated cluster algebras. We present a number of interesting new families of nonlinear recurrences, necessarily with the Laurent property, of both the real line and the plane, containing integrable maps as special cases. In particular, we show that some of these recurrences can be linearised and, with certain initial conditions, give integer sequences which contain all solutions of some particular Pell equations. We extend our construction to include recurrences with parameters, giving an explanation of some observations made by Gale.

Finally, we point out a connection between quivers which arise in our classification and those arising in the context of quiver gauge theories.

Keywords

Cluster algebra Quiver mutation Periodic quiver Somos sequence Integer sequences Pell’s equation Laurent phenomenon Integrable map Linearisation Seiberg duality Supersymmetric quiver gauge theory 

References

  1. 1.
    Assem, I., Simson, D., Skowroski, A.: Elements of the Representation Theory of Associative Algebras, vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006) zbMATHCrossRefGoogle Scholar
  2. 2.
    Assem, I., Reutenauer, C., Smith, D.: Frises. Preprint (2009). arXiv:0906.2026v1 [math.RA]
  3. 3.
    Bellon, M., Viallet, C.-M.: Algebraic entropy. Commun. Math. Phys. 204, 425–437 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: Mutations. Sel. Math., New Ser. 14, 59–119 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Feng, B., Hanany, A., He, Y.-H.: D-brane gauge theories from toric singularities and toric duality. Nucl. Phys. B 595, 165–200 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Feng, B., Hanany, A., He, Y.-H., Uranga, A.M.: Toric duality as Seiberg duality and brane diamonds. J. High Energy Phys. 12, 035 (2001) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fordy, A.P.: Mutation-periodic quivers, integrable maps and associated Poisson algebras. Preprint (2010). arXiv:1003.3952v1 [nlin.SI]
  10. 10.
    Fordy, A.P., Hone, A.N.W.: Integrable maps and Poisson algebras derived from cluster algebras. In preparation Google Scholar
  11. 11.
    Franco, S., Hanany, A., Kennaway, K.D., Vegh, D., Wecht, B.: Brane dimers and quiver gauge theories. J. High Energy Phys. 01, 096 (2006) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi-Yau categories. Trans. Am. Math. Soc. 362, 859–895 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gale, D.: The strange and surprising saga of the Somos sequences. Math. Intell. 13, 40–42 (1991) CrossRefGoogle Scholar
  14. 14.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. Mosc. Math. J. 3, 899–934 (2003) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Grammaticos, B., Ramani, A., Papageorgiou, V.G.: Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67, 1825–1828 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Halburd, R.G.: Diophantine integrability. J. Phys. A 38, L263–L269 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Heideman, P., Hogan, E.: A new family of Somos-like recurrences. Electron. J. Comb. 15, R54 (2008) MathSciNetGoogle Scholar
  18. 18.
    Hoggatt, V.E., Bicknell-Johnson, M.: A primer for the Fibonacci numbers XVII: generalized Fibonacci numbers satisfying \(u_{n+1}u_{n-1}-u_{n}^{2}=\pm1\). Fibonacci Q. 2, 130–137 (1978) MathSciNetGoogle Scholar
  19. 19.
    Hone, A.N.W.: Laurent polynomials and superintegrable maps. SIGMA 3, 022 (2007), 18 pages MathSciNetGoogle Scholar
  20. 20.
    Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Keller, B.: The periodicity conjecture for pairs of Dynkin diagrams. Preprint (2010). arXiv:1001.1531v3 [math.RT]
  22. 22.
    Keller, B., Scherotzke, S.: Linear recurrence relations for cluster variables of affine quivers. Preprint (2010). arXiv:1004.0613v2 [math.RT]
  23. 23.
    Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3, 447–498 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mukhopadhyay, S., Ray, K.: Seiberg duality as derived equivalence for some quiver gauge theories. J. High Energy Phys. 02, 070 (2004) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nakanishi, T.: Periodic cluster algebras and dilogarithm identities. Preprint (2010). arXiv:1006.0632v3 [math.QA]
  26. 26.
    Oota, T., Yasui, Y.: New example of infinite family of quiver gauge theories. Nucl. Phys. B 762, 377–391 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Quispel, G.R.W., Roberts, J.A.G., Thompson, C.J.: Integrable mappings and soliton equations. Phys. Lett. A 126, 419–421 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Sloane, N.J.A.: The on-line encyclopedia of integer sequences. www.research.att.com/njas/sequences (2009)
  29. 29.
    Stienstra, J.: Hypergeometric systems in two variables, quivers, dimers and dessins d’enfants. In: Yui, N., Verrill, H., Doran, C.F. (eds.) Modular Forms and String Duality. Fields Inst. Commun., vol. 54, pp. 125–161. Am. Math. Soc., Providence (2008) Google Scholar
  30. 30.
    Veselov, A.P.: Integrable maps. Russ. Math. Surv. 46(5), 1–51 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Vitoria, J.: Mutations vs. Seiberg duality. J. Algebra 321(3), 816–828 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Zay, B.: An application of the continued fractions for \(\sqrt{D}\) in solving some types of Pell’s equations. Acta Acad. Paedagog. Agriensis Sect. Mat. (NS) 25, 3–14 (1998) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of LeedsLeedsUK

Personalised recommendations