Journal of Algebraic Combinatorics

, Volume 34, Issue 1, pp 1–18

Square-bounded partitions and Catalan numbers

  • Matthew Bennett
  • Vyjayanthi Chari
  • R. J. Dolbin
  • Nathan Manning
Open Access


For each integer k≥1, we define an algorithm which associates to a partition whose maximal value is at most k a certain subset of all partitions. In the case when we begin with a partition λ which is square-bounded, i.e. λ=(λ1≥⋅⋅⋅≥λk) with λ1=k and λk=1, applying the algorithm times gives rise to a set whose cardinality is either the Catalan number ck+1 (the self dual case) or twice that Catalan number. The algorithm defines a tree and we study the propagation of the tree, which is not in the isomorphism class of the usual Catalan tree. The algorithm can also be modified to produce a two-parameter family of sets and the resulting cardinalities of the sets are the ballot numbers. Finally, we give a conjecture on the rank of a particular module for the ring of symmetric functions in 2+m variables.


Partitions Young diagrams Catalan numbers Current algebras 


  1. 1.
    Aigner, M.: A Course in Enumeration. Springer, Berlin (2007) MATHGoogle Scholar
  2. 2.
    Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis. Duke Math. J. 99(3), 455–487 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, M., Chari, V., Greenstein, J., Manning, N.: On homomorphisms between global Weyl modules. Preprint, arXiv:1008.5213v1
  4. 4.
    Chari, V., Greenstein, J.: Current algebras, highest weight categories and quivers. Adv. Math. 216(2), 811–840 (2007) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chari, V., Greenstein, J.: A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras. Adv. Math. 220(4), 1193–1221 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cline, E.T., Parshall, B.J., Scott, L.L.: Finite-dimensional algebras and highest weight categories. J. Reine. Angew. Math. 391, 85–99 (1988) MathSciNetMATHGoogle Scholar
  8. 8.
    Garland, H.: The arithmetic theory of loop algebras. J. Algebra 53, 480–551 (1978) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. Published electronically at (2008)
  10. 10.
    Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Matthew Bennett
    • 1
  • Vyjayanthi Chari
    • 1
  • R. J. Dolbin
    • 1
  • Nathan Manning
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations