Journal of Algebraic Combinatorics

, Volume 33, Issue 3, pp 455–463 | Cite as

The binomial ideal of the intersection axiom for conditional probabilities

Open Access


The binomial ideal associated with the intersection axiom of conditional probability is shown to be radical and is expressed as an intersection of toric prime ideals. This solves a problem in algebraic statistics posed by Cartwright and Engström.


Conditional independence Intersection axiom 


  1. 1.
    Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Oberwolfach Seminars, vol. 39. Springer, Berlin (2009) MATHCrossRefGoogle Scholar
  2. 2.
    Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84, 1–45 (1996) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Grayson, D.R., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. Available at
  4. 4.
    Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0—a computer algebra system for polynomial computations. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automated Reasoning, The Calculemus-2000 Symposium, pp. 227–233 (2001) Google Scholar
  5. 5.
    Greuel, G.-M., Pfister, G.: primdec.lib, a Singular 3.0 library for computing the primary decomposition and radical of ideals (2005) Google Scholar
  6. 6.
    Herzog, J., Hibi, T., Hreinsdóttir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. arXiv:0909.4717
  7. 7.
    Kahle, T.: Binomials.m2, code for binomial primary decomposition in Macaulay2.
  8. 8.
    Sturmfels, B.: Gröbner bases of toric varieties. Tōhoku Math. J. 43, 249–261 (1991) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1997) Google Scholar
  10. 10.
    Studený, M.: Probabilistic Conditional Independence Structures, Information Science and Statistics. Springer, New York (2005) MATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations