Advertisement

Journal of Algebraic Combinatorics

, Volume 33, Issue 3, pp 427–453 | Cite as

Tiling bijections between paths and Brauer diagrams

  • Robert J. Marsh
  • Paul Martin
Article

Abstract

There is a natural bijection between Dyck paths and basis diagrams of the Temperley–Lieb algebra defined via tiling. Overhang paths are certain generalisations of Dyck paths allowing more general steps but restricted to a rectangle in the two-dimensional integer lattice. We show that there is a natural bijection, extending the above tiling construction, between overhang paths and basis diagrams of the Brauer algebra.

Keywords

Brauer algebra Temperley–Lieb diagram Pipe dream Dyck path Overhang path Double-factorial combinatorics 

References

  1. 1.
    Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities. J. Stat. Phys. 35(3–4), 193–266 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baker, T.H., Forrester, P.J.: Random walks and random fixed-point free involutions. J. Phys. A, Math. Gen. 34, L381–L390 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bergeron, N., Billey, S.: RC-graphs and Schubert polynomials. Exp. Math. 2(4), 257–269 (1993) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Boerner, H.: Representations of Groups. With Special Consideration for the Needs of Modern Physics. North-Holland/American Elsevier, Amsterdam/New York (1970). Translated from the German by P.G. Murphy in cooperation with J. Mayer-Kalkschmidt and P. Carr. 2nd. English ed. Google Scholar
  5. 5.
    Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. (2) 38(4), 857–872 (1937) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, W.Y.C., Deng, E.Y.P., Du, R.R.X., Stanley, R.P., Yan, C.H.: Crossings and nestings of matchings and partitions. Trans. Am. Math. Soc. 359(4), 1555–1575 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cox, A., De Visscher, M., Martin, P.: A geometric characterisation of the blocks of the Brauer algebra. J. Lond. Math. Soc. (2) 80(2), 471–494 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cox, A., De Visscher, M., Martin, P.P.: Alcove geometry and a translation principle for the Brauer algebra. Journal of Pure and Applied Algebra, doi: 10.1016/j.jpaa.2010.04.023 (2010)
  9. 9.
    Cox, A., De Visscher, M., Martin, P.P.: Private communication (2010) Google Scholar
  10. 10.
    Dale, M.R.T., Moon, J.W.: The permuted analogues of three Catalan sets. J. Stat. Plan. Inference 34(1), 75–87 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fomin, S., Kirillov, A.N.: The Yang–Baxter equation, symmetric functions, and Schubert polynomials. Discrete Math. 153, 123–143 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Halverson, T., Lewandowski, T.: RSK insertion for set partitions and diagram algebras. Electron. J. Comb. 11(2), 24 (2004) MathSciNetGoogle Scholar
  13. 13.
    Lickorish, W.B.R.: An Introduction to Knot Theory. Graduate Texts in Mathematics, vol. 175. Springer, New York (1997) zbMATHGoogle Scholar
  14. 14.
    Marsh, R.J., Martin, P.: Pascal arrays: counting Catalan sets. Preprint arXiv:math/0612572v1 [math.CO] (2006)
  15. 15.
    Martin, P.: Potts Models and Related Problems in Statistical Mechanics. Series on Advances in Statistical Mechanics, vol. 5. World Scientific, Singapore (1991) zbMATHGoogle Scholar
  16. 16.
    Martin, P.P.: The decomposition matrices of the Brauer algebra over the complex field. Preprint arXiv:0908.1500v1 [math.RT] (2009)
  17. 17.
    Martin, P.P., Rollet, G.: The Potts model representation and a Robinson–Schensted correspondence for the partition algebra. Compos. Math. 112(2), 237–254 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Martin, P., Woodcock, D., Levy, D.: A diagrammatic approach to Hecke algebras of the reflection equation. J. Phys. A 33(6), 1265–1296 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Martin, P., Saleur, H.: On algebraic diagonalization of the XXZ chain. Perspectives on solvable models. Int. J. Mod. Phys. B 8(25–26), 3637–3644 (1994) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rubey, M.: Nestings of matchings and permutations and north steps in PDSAWs. In: Discrete Mathematics & Theoretical Computer Science Proceedings, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), pp. 691–704. North America, December 2008. Available at: http://www.dmtcs.org/dmtcsojs/index.php/proceedings/article/view/dmAJ0159/2571. Preprint arXiv:0712.2804v4 [math.CO]
  21. 21.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2009). www.research.att.com/~njas/sequences/
  22. 22.
    Stanton, D., White, D.: Constructive Combinatorics. Undergraduate Texts in Mathematics. Springer, New York (1986) zbMATHGoogle Scholar
  23. 23.
    Sundaram, S.: On the combinatorics of representations of Sp(2n,ℂ). PhD thesis, MIT (1986) Google Scholar
  24. 24.
    Sundaram, S.: The Cauchy identity for Sp(2n). J. Comb. Theory, Ser. A 53, 209–238 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Temperley, H.N.V., Lieb, E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. Lond. Ser. A 322(1549), 251–280 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Terada, I.: Brauer diagrams, updown tableaux and nilpotent matrices. J. Algebr. Comb. 14, 229–267 (2001) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of LeedsLeedsUK

Personalised recommendations