Journal of Algebraic Combinatorics

, Volume 33, Issue 2, pp 313–324 | Cite as

On the Stanley depth of squarefree Veronese ideals

  • Mitchel T. Keller
  • Yi-Huang Shen
  • Noah Streib
  • Stephen J. Young
Open Access
Article

Abstract

Let K be a field and S=K[x1,…,xn]. In 1982, Stanley defined what is now called the Stanley depth of an S-module M, denoted sdepth (M), and conjectured that depth (M)≤sdepth (M) for all finitely generated S-modules M. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when M=I/J with JI being monomial S-ideals. Specifically, their method associates M with a partially ordered set. In this paper we take advantage of this association by using combinatorial tools to analyze squarefree Veronese ideals in S. In particular, if In,d is the squarefree Veronese ideal generated by all squarefree monomials of degree d, we show that if 1≤dn<5d+4, then sdepth (In,d)=⌊(nd)/(d+1)⌋+d, and if d≥1 and n≥5d+4, then d+3≤sdepth (In,d)≤⌊(nd)/(d+1)⌋+d.

Keywords

Stanley depth Squarefree monomial ideal Interval partition Squarefree Veronese ideal 

References

  1. 1.
    Alcántar, A.: Rees algebras of square-free Veronese ideals and their a-invariants. Discrete Math. 302, 7–21 (2005) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Apel, J.: On a conjecture of R.P. Stanley. I. Monomial ideals. J. Algebr. Comb. 17(1), 39–56 (2003) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Apel, J.: On a conjecture of R.P. Stanley. II. Quotients modulo monomial ideals. J. Algebr. Comb. 17(1), 57–74 (2003) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Biró, Cs., Howard, D.M., Keller, M.T., Trotter, W.T., Young, S.J.: Interval partitions and Stanley depth. J. Comb. Theory Ser. A. 117(4), 475–482 (2010) MATHCrossRefGoogle Scholar
  5. 5.
    Cimpoeaş, M.: Stanley depth of complete intersection monomial ideals. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 51(99)(3), 205–211 (2008) Google Scholar
  6. 6.
    Cimpoeaş, M.: A note on Stanley’s conjecture for monomial ideals. arXiv:0906.1303 [math.AC] (2009)
  7. 7.
    Cimpoeaş, M.: Stanley depth of square free Veronese ideals. arXiv:0907.1232 [math.AC] (2009)
  8. 8.
    Dress, A.: A new algebraic criterion for shellability. Beitr. Algebra Geom. 34(1), 45–55 (1993) MATHMathSciNetGoogle Scholar
  9. 9.
    Herzog, J., Hibi, T.: Cohen-Macaulay polymatroidal ideals. Eur. J. Comb. 27, 513–517 (2006) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Herzog, J., Jahan, A.S., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes. J. Algebr. Comb. 27, 113–125 (2008) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322(9), 3151–3169 (2009) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Keller, M.T., Young, S.J.: Stanley depth of squarefree monomial ideals. J. Algebra 322(10), 3789–3792 (2009) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nasir, S.: Stanley decompositions and localization. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 51(99)(2), 151–158 (2008) MathSciNetGoogle Scholar
  14. 14.
    Okazaki, R.: A lower bound of Stanley depth of monomial ideals. J. Commut. Algebra (2009, to appear) Google Scholar
  15. 15.
    Popescu, D.: Stanley depth of multigraded modules. J. Algebra 321(10), 2782–2797 (2009) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Shen, Y.H.: Stanley depth of complete intersection monomial ideals and upper-discrete partitions. J. Algebra 321(4), 1285–1292 (2009) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Stanley, R.P.: Linear Diophantine equations and local cohomology. Invent. Math. 68, 175–193 (1982) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Mitchel T. Keller
    • 1
  • Yi-Huang Shen
    • 2
  • Noah Streib
    • 1
  • Stephen J. Young
    • 1
    • 3
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of MathematicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations